
САНКТ-ПЕТЕРБУРГСКИЙ
ГОСУДАРСТВЕННЫЙ

УНИВЕРСИТЕТ

ПРИОРИТЕТНЫЙ 
НАЦИОНАЛЬНЫЙ ПРОЕКТ

"ОБРАЗОВАНИЕ"

Проект «Инновационная образовательная среда в классическом университете»

Пилотный проект № 22 «Разработка и внедрение
инновационной образовательной программы «Прикладные математика и физика»»

Физический факультет 

Kафедра 
Вычислительной физики

С.Л. Яковлев, Е.А. Яревский

Вычислительные алгоритмы 

Учебно-методическое пособие
.

Санкт Петербург
2009 г.



• Рецензент: зав. кафедрой высшей математики и математической 
физики, д.ф.-м.н., проф. Буслаев В.С.

• Печатается по решению методической комиссии физического 
факультета СПбГУ. 

• Рекомендовано Ученым советом физического факультета СПбГУ. 

Вычислительные алгоритмы.  –   СПб., 2009

В   учебно-методическом   пособии   рассмотрены   важнейшие   вычисли-
тельные  задачи   линейной   алгебры.   Подробно   описаны   наиболее 
эффективные алгоритмы   решения  этих  задач,  основанные  на  методах 
QR-разложений   и  методе   Ланцоша.   Пособие   предназначено   для 
студентов 5-7-го  курсов, аспирантов, соискателей и других обучающихся.

S.L. Yakovlev, E.A. Yarevsky
Computational algorithms. St Petersburg, 2009

The major  computational problems of Linear Algebra are considered. The most 
efficient algorithms for their solution which are based on QR-decomposition and 
Lanczos iteration method are given in details. 
  



Lecture 1

Introduction and

Preliminaries

1.1 The Basic Problem

For a given n×n matrix A, the eigenvalue problem is to find a scalar λ, called
an eigenvalue of A, and a vector x, called an eigenvector corresponding to
the eigenvalue λ, such that

Ax = λx. (1.1)

We may refer to the pair (λ,x) as an eigenpair. The matrix A may be real
or complex, and have other properties which we will discuss at length.

It is not clear when the matrix eigenvalue problem first arose, but it is
likely that it originated in the study of a continuous problem, the motion of
a vibrating string. The word “eigenvalue” is a corruption of a German word.
Eigenvalues are also known as proper values, characteristic roots, as well as
other terms.

Example A simple example that illustrates the importance of eigenvalues
is the system of ordinary differential equations

y′(t) = Ay, (1.2)

with initial conditions
y(0) = y0. (1.3)

If Az = λz, then
y(t) = aeλtz,

where a is an arbitrary constant, satisfies the system (1.2). Of course, we
need to satisfy the initial conditions (1.3), and in order to do so, we need to
take a linear combination of all eigenvectors of A. �

Now, from (1.1), we have
(A − λI)x = 0,
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so that a solution exists if and only if

det(A − λI) = 0.

Now,

det(A − λI) = (a11 − λ)(a22 − λ) . . . (ann − λ) + other terms (1.4)

where the other terms are polynomials in λ of degree ≤ n. Since
∏n

i=1(aii−λ)
is a polynomial of degree n,

det(A − λI) = polynomial of degree ≤ n.

Note that by the classical expansion of the determinant, the other terms in
(1.4) are of degree ≤ n. Hence

(−1)n det(A − λI) = λn + c1λ
n−1 + · · · + cn−1λ + cn = ϕn(λ) (1.5)

This polynomial (1.5) is known as the characteristic polynomial.
Now, it is easy to see from (1.4) that

c1 = −

n∑

i=1

aii = −

n∑

i=1

λi

i.e., tr(A) =

n∑

i=1

λi. (1.6)

This relationship (1.6) is very useful, and is often used. In partcular, if all
the eigenvalues of a matrix are desired, it can provide a quick check to see
if the computed eigenvalues are reasonable.

Since det(A − λI) = polynomial of degree n, we have immediately that
every n × n matrix has n eigenvalues. Furthermore, since the coefficients of
the characteristic polynomial are functions of the elements of A, the eigenval-
ues are a continuous function of the elements of the matrix. Note also, that
if A is real, then the eigenvalues must be real or occur in complex conjugate
pairs.

The Cayley-Hamilton Theorem states that every matrix satisfies its char-
acteristic polynomial. There are many algorithms that make use of this nice
property, for example consider the Krylov vector sequence

η0 = η, η1 = Aη, η2 = A2η1, . . . , ηn = Anηn−1

where η is an arbitrary vector of length n and A is an n × n matrix. Then,

ϕn(A)η = Anη + c1A
n−1η + · · · + cn−1Aη + cnη = 0

which is equivalent to

c1ηn−1 + c2ηn−2 + · · · + cnη0 = −ηn
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or in matrix form

Bc = −ηn

where

B =
[

ηn−1 ηn−2 · · · η0

]
, c =








c1

c2
...

cn








.

By solving this linear system we get the characteristic polynomial of A.
Notice, however, that η must lie in the space of all eigenvectors of A otherwise
B will be singular.

Another nice consequence of the Cayley-Hamilton Theorem is that An

can be writen as a linear combination of the set of matrices A0, A1, . . . , An−1

and by simple induction it can be shown that the same is true for any integer
power of A. Since any analytic function of A has a power series extension,
the same holds for any analytic function of A as well. Notice in particular
that

A−1 = −
1

cn
(An−1 + c1A

n−2 + · · · + cn−1I).

Obviously, the eigenvector is not unique, since if

Ax = λx, A(cx) = λ(cx),

so cx is also an eigenvector of A if c 6= 0. We usually impose the condition
that ‖x‖2 = 1, but this is not sufficient to guarantee uniqueness as multi-
plication of an eigenvector by eiθ will produce another eigenvector with the
same norm. For this reason, the notion of different eigenvectors being lin-
early independent is generally assumed. The following theorem provides a
sufficient condition for this to be true.

Theorem 1.1. For an arbitrary n × n matrix A, if A has n distinct eigen-

values, then there are n linearly independent eigenvectors.

In general, there may be fewer than n eigenvectors. For example, if

A =

[
2 100
0 2

]

then det(A − λI) = (2 − λ)2 and hence, λ1 = λ2 = 2. But, since

rank(A − 2I) = 1,

there is only one eigenvector, x = e1 =
[

1 0
]T

.
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1.2 Well Known Example

A well known example that is of interest is the matrix

A =












0 1 0 . . . 0

0 0 1
. . .

...
...

. . .
. . . 0

...
. . . 1

0 . . . 0












.

Since det(A − λI) = (−λ)n, λi = 0 for i = 1, 2, ..., n. But, rank(A − λI) =
(n − 1). Notice that the (n − 1) × (n − 1) upper corner of A is the identity
matrix. Thus, x = e1 is the only eigenvector of this matrix.

Now, consider

A(ε) =












0 1 0 . . . 0

0 0 1
. . .

...
...

. . .
. . . 0

0
. . . 1

ε 0 . . . 0












.

det(A(ε) − λI) = (−λ)n + (−1)n−1ε.

So, λn − ε = 0,

|λi| = |ε|
1

n for i = 1, 2, ..., n.

Since we have n distinct eigenvalues, we therefore have n eigenvectors. Note
also that if n = 10, and ε = 10−10, then

|λi| = 0.1.

Thus, a small perturbation in a (non-symmetric) matrix can cause a large
(relative) perturbation in the eigenvalues. This is an example of a matrix
that is ill-conditioned with regards to estimation (computation) of eigenval-
ues. We shall discuss this concept in greater detail later.

1.3 Useful Properties

We will need some other relationships in developing algorithms for comput-
ing eigenvalues. Some of these are:

1. If Ax = λx, then

(A + αI)x = (λ + α)x.
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2. A2x = A(Ax) = λ(Ax) = λ2x and

Akx = λkx.

3. Let Pk(A) = Am(α0A
k +α1A

k−1 + · · ·+αkI) where αi are scalars, and
m may be negative. If Pk(A)x = µx, then

µ = λm(α0λ
k + α1λ

k−1 + · · · + αk) = pk(λ).

Similarly, Pk(A)x = pk(λ)x, and if F is an analytic function, F (A)x =
f(λ)x where f is a “scalar version” of F .

We can often reconstruct the eigenvalues from pk(λ). But there can be
difficulties. Suppose A has +λ and −λ as eigenvalues. Then A2 has
the eigenvalues λ2 (twice). so, it may not be possible to compute the
eigenvalues and eigenvectors from A2.

For example, consider

A =

[
2 0
0 −2

]

.

A has eigenpairs (+2, e1) and (−2, e2), whereas for A2, λ1 = λ2 = 4
and x1 = αe1 +βe2 and x2 = γe1+δe2 for any α, β, γ, and δ provided

∣
∣
∣
∣

α β

γ δ

∣
∣
∣
∣
6= 0.

4. If B = Q−1AQ, then By = λy i.e., B has the same eigenvalues as A,
and x = Qy. We say that B is similar to A, and call the transformation
A → Q−1AQ a similarity transformation of A.

5. If A is real, then

Ax = λx, x = u + iv

Ax̄ = λ̄x̄, x̄ = ū− iv̄.

where u and v are real valued. That is to say, if (λ,x) is an eigenpair,
then the complex conjugate of that eigenpair is also an eigenpair.

1.4 Spectral Decomposition

Let A have distinct eigenvalues and let X be the matrix whose columns are
eigenvectors of A.

AX = A[x1, x2, ..., xn]

= [λ1x1, λ2x2, ..., λnxn]

= XΛ
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where Λ = diag(λ1, λ2, ..., λn). Therefore, by theorem 1.1:

A = XΛX−1 .

This decomposition is referred to as the spectral decomposition of A, and any
such A is called diagonalizable.

1.5 More Examples and Applications

1. Suppose A has n linearly independent eigenvectors. Then:

A2 = XΛX−1 · XΛX−1

= XΛ2X−1

...

Ak = XΛkX−1

and,

Pk(A) = XPk(Λ)X−1

F (A) = XF (Λ)X−1

if F is an analytic function. One should note that these are not unique
factorizations since the eigenvectors which comprise the columns of X

are not unique.

2. If |λi| < 1 for i = 1, ..., n, then Ak → 0 as k → ∞.

3. Consider the following system of linear differential equations (assume
that A is diagonalizable):

y ′(x) = Ay(x) with y(0) = y (0).

Now if A = QΛQ−1,

Q−1y ′(x) = ΛQ−1y(x).

Thus, if:

z(x) = Q−1y(x)

z ′(x) = Λz(x)
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or

z′j(x) = λjzj(x)

zj(x) = eλjxz
(0)
j (x)

y(x) = Q








eλ1x

eλ2x 0

0
. . .

eλnx








Q−1y(0)

≡ eAxy(0).

Hence, if Real(λi) < 0 for i = 1, ..., n, then

y(x) → 0 as x → ∞.

The matrix eA is referred to as the matrix exponential. Recall that eA

can be represented as a polynomial in A.

1.6 Jordan Canonical Form

Of course, the situation becomes more complicated when A cannot be diag-
onalized. Then

A = QJQ−1,

J =








J1

J2
0

0
. . .

Jr








with

Ji =








λi 1
. . .

. . .
0

0
1
λi








ni×ni

Note that rank(Ji − λiI) = (ni − 1) so there is only one eigenvector that
corresponds to λi. This decomposition is known as Jordan Canonical Form,
or JCF.
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Obviously,

Ak = QJkQ−1

= Q








Jk
1

Jk
2

0

0
. . .

Jk
r








Q−1

Jk
i =








λi 1
. . .

. . .
0

0
1
λi








k

ni×ni

= (λiI + Ki)
k

where

Ki =








0 1
. . .

. . .
0

0
1
0








ni×ni

.

Then, (λiI + Ki)
k =

∑k
p=0

(
k
p

)
λ

p
i K

k−p
i , noting that

K2
i =










0 0 1
. . .

. . .
. . .

0

0
1
0
0










q < ni : K
q
i =
















q diags
︷ ︸︸ ︷

0 . . . 0 1
. . .

. . .
. . .

0

0

1
0
...
0

}
















.

And as a result of the Cayley-Hamilton Theorem, if q ≥ ni, K
q
i = 0. Notice

that raising Ki to the qth power moves the 1’s into the qth diagonal, if we
call the principal diagonal the 0th diagonal as in MATLAB.
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Thus for k ≥ ni,

Jk
i =








λk
i

(
k
1

)
λk−1

i

(
k
2

)
λk−2

i . . .
. . .

. . .

λk
i








ni×ni

.

Here again, we note that when |λi| < 1 for i = 1, ..., n,

Ak → ∞ as k → ∞.

But, convergence may be quite slow. For example:

A =

[
1
2 1
0 1

2

]10

=

[
1

210

10
210

0 1
210

]

≈

[
10−3 10−2

0 10−3

]

.

As you can see from our exmple in §1.2, a small perturbation, such as
A → A(ε) can greatly affect the Jordan Canonical Form. The JCF of A is
given by A = IAI (at least, this is one possibile form), but the JCF of A(ε)
is greatly different since J for this matrix is diagonal. For this reason, the
Jordan Canonical Form is considered unstable.

1.7 Schur Decomposition

There are other decompositions which will play a major role in our studies.
One such decomposition is the Schur Decomposition. A rather uninsightful
proof of this decomposition is as follows: Let A = QJQ−1 be the Jordan
Canonical Form of A, and let Q = UT be the QR-factorization of Q (hence
U∗U = I and T is upper triangular). Then:

A = UTJT−1U∗

= U









× ×
×

. . . ×
. . .

...

0
. . . ×

×
















J1

J2
0

0
. . .

Jr
















× ×
×

. . . ×
. . .

...

0
. . . ×

×









U∗

= URU∗,

where R is upper triangular. Note, we shall use × to denote elements of a
matrix that do not hold important values. This shorthand is quite useful for
describing sparsity patterns.

Later, we shall give a more constructive proof of the Schur Decomposi-
tion.
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Lecture 2

More Decompositions

2.1 Constructing the Schur Decomposition

We now give a more constructive proof that every matrix A has a Schur

Decomposition

A = UTU∗ (2.1)

where U is a unitary matrix, T is an upper triangular matrix, and the
diagonal elements of T are the eigenvalues of A.

Suppose that we have computed an eigenvector x1 with ‖x1‖2 = 1, whose
first element, x1, is real and non-negative. Now we can construct a House-
holder Matrix, P (1) = I − 2u1u

∗

1 with ‖u1‖2 = 1, such that

P (1)x1 = e1

x1 = P (1)∗e1 = P (1)e1 =











1 − 2|u1|
2

−2u2ū1
...

−2unū1











|u1|
2 =

1

2
(1 − x1).

If x1 = ρeiθ, we will renormalize x1 so that x1 := e−iθx1. Hence,

|u1|
2 =

1

2
(1 − ρ)

uj = −
xj

2ū1
.

Note that Householder matrices also satisfy P = P ∗ and PP ∗ = P ∗P = I.
It is important to note that we would not formally store P , but rather we
would store u and perform the matrix-vector multiply, Pz, according to
z− 2(u∗z)u. The computational cost of this matrix-vector multiplier is also
reduced from O

(

n2
)

scalar multiplies to O (2n) multiplies.

11



The next step in the construction of the Schur Decomposition is the
application of a similarity transformation using P (1).

A(2) = P (1)∗AP (1)

= P (1)∗A[x1,p2, . . . ,pn]

= P (1)∗[λx1, Ap2, . . . , Apn]

=











x∗

1

p∗

2
...

p∗

n











[λx1, Ap2, . . . , Apn]

=











λ x∗

1Ap2 . . . x∗

1Apn

0 p∗

2Ap2 . . . p∗

2Apn

...
...

...
0 p∗

nAp2 . . . p∗

nApn











=













λ × . . . ×

0 a
(2)
22 . . . a

(2)
2n

...
...

...

0 a
(2)
n2 . . . a

(2)
nn













=

[

λ ×T

0 Ã(2)

]

Since we used a similarity transformation to construct A(2), the eigenvalues
of A(2) equal those of A. Furthermore, λ is an eigenvalue of A and A(2), hence
the remaining eigenvalues of A must be the eigenvalues of Ã(2). In addition,
Ã(2) must have at least one eigenvector. So, we can repeat this process then

acting only on Ã(2). The new P (2) will be of the form

[

1 0T

0 P̃ (2)

]

.

This is an example of a technique known as deflation wherein one gradu-
ally reduces the dimensionality of the problem being solved. Ultimately, this
process constructs the Schur Decomposition if the matrix has n eigenvectors
as follows:

A(n) =













λ1 ×
λ2

. . . ×
. . .

...

0
. . . ×

λn













= R

= P (n−1)∗A(n−1)P (n−1)

= P (n−1)∗P (n−2)∗ . . . P (1)∗AP (1) . . . P (n−2)P (n−1)

= Q∗AQ

∴ A = QRQ∗

12



This construction has been shown to have very good numerical stability
properties.

2.2 Normal Matrices and Departure from Normal-

ity

If A = A∗, then R is a diagonal matrix. Furthermore, if A is symmetric,
A = QΛQT , where Λ = diag(λ1, ..., λn), and QT Q = QQT = I. This is a
special case of normal matrices. A matrix is said to be normal if AA∗ = A∗A.
Matrices which are real and symmetric, skew-symmetric (A = −AT ), orthog-
onal, or hermitian, are other examples of normal matrices. But, complex
symmetric matrices are not normal.

If A is normal,
A = QDQ∗

where Q∗Q = I, and D = diag(λ1, ..., λn).
The Schur decomposition gives

A = QTQ∗

where T = D + N , D is the diagonal part of T , and N is the strictly upper
triangular part. Thus,

‖A‖2
F =

∑

i,j

|aij |
2

= ‖T‖2
F = ‖D‖2

F + ‖N‖2
F

∆(A) = ‖N‖2
F = ‖A‖2

F − ‖D‖2
F

= ‖A‖2
F −

∑

i

|λi|
2

=< Departure from Normality >

2.3 Murgnahan-Wintner Form

An eigenvector defines a one-dimensional subspace of C
n. More generally, a

subspace S ⊆ C
n with the property

x ∈ S ⇒ Ax ∈ S

is said to be an invariant subspace for A. Thus if

AX = XB X ∈ C
n×k, B ∈ C

k×k

then span(X) is invariant and

By = λy ⇒

A(Xy) = XBy = λXy.

13



So, if X has full column rank, then AX = XB implies λ(B) ⊆ λ(A) (i.e.,
each eigenvalue of B is an eigenvalue of A). Thus, if we know an invariant
subspace (that is spanned by X), then we can reduce our search for eigen-
values of A to those of the smaller matrix B, then continue to look in a
different subspace for the remaining eigenvalues.

Now, assume that X has full rank, and AX = XB:

X = Q

[

R1

0

]

, Q ∈ C
n×n, R1 ∈ C

p×p

AQ

[

R1

0

]

= Q

[

R1

0

]

B

Q∗AQ

[

R1

0

]

=

[

R1

0

]

B

Q∗AQ ≡

[

T11 T12

T21 T22

]

= T

T

[

R1

0

]

=

[

R1

0

]

B

T11R1 = R1B

T21R1 = 0 ⇒ T21 = 0.

Note, the eigenvalues of T are those of A, and since X has full rank, R has
full rank, and the conclusion on T21 follows. Hence,

Q∗AQ =

[

T11 T12

0 T22

]

.

One can verify that

λ(A) = λ(T11) ∪ λ(T22).

This is a generalization of the Schur Theorem.

Suppose that A is real. Then if λ = α+iβ is an eigenvalue (where β 6= 0),
λ̄ = α − iβ is also an eigenvalue. Furthermore, x = u + iv is an eigenvector
that corresponds with λ, and x̄ = u− iv is an eigenvector that corresponds
with λ̄. Thus X = [u,v] is an invariant subspace since:

A[u,v]

[

1 1
i −i

]

= [u,v]

[

1 1
i −i

] [

λ 0
0 λ̄

]

A[u,v] = [u,v]B

where B =

[

1 1
i −i

] [

λ 0
0 λ̄

] [

1 1
i −i

]

−1

=

[

α β

−β α

]

14



If A is a real matrix, we can construct a real Q and T so that

QT AQ =





























T1,1 × . . . ×
T2,2

. . .
. . .

Tk,k ×
...

t2k+1,2k+1
. . .

0
. . . ×

tn,n





























where Ti,i is a real 2× 2 matrix, with complex eigenvalues. This is different
than the Schur Form in that a quasi-upper triangular matrix is constructed
(“quasi” in that there are 2 × 2 dense blocks along the diagonal). This is
called the Murgnahan-Wintner Form.

2.4 Singular Value Decomposition

A = UΣV ∗

m × n

m ≥ n

is the Singular Value Decomposition, where

U∗U = Im×m, V ∗V = In×n, Σ =











σ1 0
. . .

0 σn

0











m×n

,

each σi is real, and σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0. Other forms also exist with
related properties.

rank(A) =< number of singular values which are non-zero > .

Note:

AA∗ = UΣV ∗V Σ∗U∗

= UΣΣ∗U∗

= U











σ2
1 0

. . . 0
0 σ2

n

0 0











m×m

U∗

15



Thus, the columns of U are the eigenvectors of AA∗. Similarly, the columns
of V are the eigenvectors of A∗A, and σ2

i are the eigenvalues of A∗A.
Let

A =





0 1 0
0 0 1
0 0 0



 .

rank(A) = 2, and λi = 0 for i = 1, 2, 3. But:

AT A =





0 0 0
1 0 0
0 1 0









0 1 0
0 0 1
0 0 0



 =





0 0 0
0 1 0
0 0 1



 ,

so σ1 = σ2 = 1 and σ3 = 0. Thus, the number of non-zero eigenvalues can
only provide a lower bound for the rank of the matrix, yet the number of
non-zero singular values tell us the rank.

Also,

‖A‖2
F = ‖UΣV ∗‖2

F = ‖Σ‖2
F

= σ2
1 + σ2

2 + · · · + σ2
n

∆(A) = ‖N‖2
F =

n
∑

i=1

(σ2
i − |λi|

2).

The singular value decomposition also tells us how to construct a nearby
matrix of lower rank. Let A = UΣV ∗ =

∑r
i=1 σiuiv

∗

i (i.e., express A as the
sum of r-rank 1 matrices). Find a matrix, B, such that rank(B) = k < r

and
‖A − B‖F = min .

It is easy to show that the answer to this problem is:

B = Ak =

k
∑

i=1

σiuiv
∗

i

and
‖A − B‖2

F = σ2
k+1 + · · · + σ2

r .

A similar problem which is often of interest is the following:
Given A where A = Â + E and E represents the error in A, furthermore

‖E‖ < ε is known. Find a matrix, B, of minimal rank such that:

‖A − B‖F < ε.

16



Lecture 3

More on SVD & Generation

of Eigenvalue Problems

3.1 SVD and the Matrix 2-Norm

The 2-norm of a matrix A can be bounded using the SVD as follows:

‖A‖2 = max
x 6=0

‖Ax‖2

‖x‖2

= max
V T x 6=0

‖UΣV Tx‖2

‖V Tx‖2

= max
y 6=0

‖Σy‖2

‖y‖2

= max
y 6=0

√
∑n

i=1 σ2
i y

2
i

∑n
i=1 y2

i

≤ σ1.

However, this bound is achieved by setting y = e1 (i.e., x = V e1). Thus,

‖A‖2 = σ1(A).

‖ · ‖2 is sometimes called the spectral norm.

3.2 Canonical Correlation

Another useful application of the SVD is to describe the angle between two
spaces. Let Am×n and Bm×p. Consider arbitrary vectors, x and y in the
range of A and B respectively (i.e., x = Aξ and y = Bη). Then for a given
ξ and η, the angle between x and y is defined as:

cos(x,y) =
|xT y|

‖x‖2‖y‖2
.

17



We can then define the angle between range(A) and range(B) as follows:

cos(A,B) = max
ξ,η

|xT y|

‖x‖2‖y‖2

= max
ξ,η

|ξT AT Bη|

‖Aξ‖2‖Bη‖2

= max
ξ,η

|ξT AT Bη|

‖ξ‖2‖η‖2
.

Let us suppose further that A and B have QR-decompositions

Am×n = Qm×m

[
Rn×n

0(m−n)×n

]

, Bm×r = Wm×m

[
Tr×r

0(m−r)×r

]

.

Then,

cos(A,B) = max
ξ,η

∣
∣
∣
∣
ξT

[
RT 0T

]
QT W

[
T

0

]

η

∣
∣
∣
∣

∥
∥
∥
∥
Q

[
R

0

]

ξ

∥
∥
∥
∥

2

∥
∥
∥
∥
W

[
T

0

]

η

∥
∥
∥
∥

2

= max
g,h

∣
∣
∣
∣
gT

[
In 0

]
QT W

[
Ir

0

]

h

∣
∣
∣
∣

‖g‖2‖h‖2
,

where g = Rξ and h = Tη.

If we partition Q =
[
Qn Qm−n

]
and W =

[
Wr Wm−r

]
, then

[
In 0

]
QTW

[
Ir

0

]

= QT
nWr.

Recall that the largest eigenvalue of a symmetric matrix can be obtained
using the Rayleigh Quotient:

λ1(A) = max
x 6=0

|xT Ax|

‖x‖2
2

.

Similarly,

max
x,y 6=0

|xT Ay|

‖x‖2‖y‖2
≤ max

x,y

‖Ax‖2‖y‖2

‖x‖2‖y‖2

= max
x 6=0

‖Ax‖2

‖x‖2

= σ1(A)

18



where the inequality is obtained by the Cauchy-Schwarz theorem. Further-
more, the upper bound is attainable by letting x be the first column of U

and y be the first column of V , and therefore

σ1(A) = max
x,y 6=0

|xT Ay|

‖x‖2‖y‖2
.

It follows that the angle between range(A) and range(B) is given by

cos(A,B) = σ1(Q
T
nWr) ≤ 1.

In statistics, this calculation is also referred to as the canonical correlation

of A and B. This concept also rises in biomedical applications.

3.3 SVD and Jordan Canonical Form

One potential problem that arises when computing the Jordan Canonical
Form is that there is no a priori knowledge as to how many eigenvectors a
matrix has, or, in particular, how many eigenvectors correspond to a partic-
ular eigenvalue. The SVD can be used to obtain this information.

Suppose we know that A has an eigenvalue λ. Then the SVD of (A−λI)
tells us that

(A − λI)V = UΣ.

Therefore, if

(A − λI)vj = 0

for j = (n−k+1), ..., n, it follow that there are k eigenvectors corresponding
to the eigenvalue λ, and the eigenvectors are {vj} for these same j. Further-
more, we can conclude that the Jordan canonical form of A has k blocks
corresponding to the eigenvalue λ.

3.4 The SVD and Least Squares

Finally, the SVD can be used for solving linear least squares problems. Sup-
pose that we are given Am×n, with rank(A) = r, and an m-vector b. We
want to find a vector x of minimal Euclidian length such that ‖b− Ax‖2 is
minimized.

Now,

‖b − Ax‖2 = ‖b − UΣV Tx‖2

= ‖UT b− Σy‖2.
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If we let

UTb =













c1
...
cr

d1
...

dm−r













=

[
c

d

]

and Σ =













σ1

. . .

σr

0
. . .

0













,

then

‖b − Ax‖2
2 =

r∑

i=1

(ci − σiyi)
2 +

n∑

i=r+1

d2
i .

Thus, the residual is minimized when yi = ci

σi
for i = 1, ..., r. Furthermore,

x = V y, so ‖x‖2 = ‖y‖2, from which it follows that ‖x‖2 is minimized by
setting the remaining yi = 0 for i = r + 1, ..., n. Therefore, the solution is
given by:

x̂ = V













1
σ1

. . .
1
σr

0
. . .

0

























c1
...
cr

d1
...

dm−r













= V













1
σ1

. . .
1
σr

0
. . .

0













UTb

≡ A+b.

where A+ is known as the pseudo-inverse of A. Note that once we have
computed the SVD of A, a sequence of least squares problems can be easily
solved.

3.5 Lower Rank Approximations Revisited

In light of our previous discussion, we can see why one might want to replace

a matrix with one of lower rank. Suppose that the matrix

[
1 ×
0 10−10

]

is

obtained after a long series of computations. One is left to wonder if this
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matrix is actually a rank-2 matrix, or is better represented as a rank-1
matrix in light of potential round-off error. If one were to solve a system of
equations using this matrix, and if the 10−10 term were in exact arithmetic
0, the computed solution would be very inaccurate. Instead of forming

A−1b =

[
1 ×
0 1010

]

b,

it may be more appropriate to form

Ã+b =

[
1 ×
0 0

]

b.

It is important to note that while the eigenvalues of a matrix can be ex-
tremely sensitive to small perturbations, the singular values are well-conditioned,
which justifies the use of the pseduo-inverse in such cases.

3.6 Computational Considerations for Eigenvalue

Problems

We have many different computational considerations associated with eigen-
value problems. The methods we will develop in the remainder of the term
will depend largely on the matrix characteristics, and the actual quantities
of interest.

The following are some characteristics which will affect the algorithm we
choose to solve our problem, and the software that is developed:

1. Matrices:

(a) Real Valued:

i. Symmetric

ii. Non-symmetric

A. Skew-symmetric

B. Hard (e.g., ill-conditioned)

iii. Sparse

A. Structured (e.g., banded)

B. Unstructured (e.g., Markov matrices)

iv. Dense

A. Structured (Toeplitz, Hankel)

B. Unstructured

(b) Complex Valued:

i. Hermitian (A = A∗)

ii. Complex Symmetric (A = AT )
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iii. Arbitrary Values

2. Items of interest:

(a) All eigenvalues (and eigenvectors?)

(b) Only the largest eigenvalue (and the corresponding eigenvector?)

(c) Only the smallest eigenvalue (and the corresponding eigenvector?)

(d) Eigenvalues such that Real(λj) < 0

(e) Eigenvalues such that |λj − α| < β

(f) Methods for varying computer architectures

Some examples of more difficult problems are:

1. Find the eigenvalues of a sequence of problems A1, A2, A3, ... where

Ai+1 = Ai + uiu
T
i ,

or

Ai+1 =

[
Ai ×
× ×

]

.

2. Find (λ,x) such that

(λ2A + λB + C)x = 0.

3.7 Problems Which Can Be Transformed Into Stan-

dard Eigenvalue Problems

1. Root Finding

Suppose one wanted to find all the roots of the polynomial

λn + cn−1λ
n−1 + cn−2λ

n−2 + · · · + c0 = 0. (3.1)

Consider the matrix

C =











0 1 0
... 0 1
...

...
. . .

. . .

0 0 . . . 0 1
−c0 −c1 . . . −cn−2 −cn−1











and the eigenvalue problem

Cy = λy.
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Expanding this system of equations, we obtain

y2 = λy1

...

yn = λyn−1

−c0y1 − c1y2 − · · · − cn−1yn = λyn.

However, the first n − 2 equations imply

yj = λj−1y1 for j = 1, 2, . . . , n.

Substituting these relations into the last equation yields

(λn + cn−1λ
n−1 + cn−2λ

n−2 + · · · + c0)y1 = 0.

Hence, any eigenvalue of C is a root of this polynomial. Furthermore,
one could construct the characteristic polynomial by expansion of the
determinant and discover that the characteristic polynomial of C has
the same roots as our polynomial (3.1). For this reason, C is called
the companion matrix of this polynomial.

There are other matrices which express a polynomial as a linear com-
bination of orthogonal polynomials. One such matrix is called the
comrade matrix which may be discussed at a later time.

2. The Generalized Eigenvalue Problem

Suppose we wanted to solve the generalized eigenvalue problem: Find
a vector x and a scalar λ such that

Ax = λBx.

Of course, if B is invertible, we could solve the standard eigenvalue
problem B−1Ax = λx. However, this strategy often destroys spar-
sity and symmetry, which is a very desirable property for eigenvalue
problems, as we shall see later.

Suppose A is symmetric, and B is symmetric and positive definite.
Then, we could write B = FF T . This decomposition could be com-
puted using the Cholesky Factorization, but this is certainly not the
only possibility, since if G is the Cholesky factor of B, and if Q is an
orthogonal matrix, then

(GQ)(GQ)T = GQQT GT = GGT = B
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is another possible factorization of this form. Then, we can manipulate
our generalized eigenvalue problem as follows:

Ax = λBx

= λFF Tx

F−1Ax = λF Tx

F−1AF−T F Tx = λF Tx

Cy = λy

where C = F−1AF−T and y = F Tx. Now, we have a standard sym-
metric eigenvalue problem, since the matrix C is symmetric. Fur-
thermore, the original eigenvalues have not changed, and the original
eigenvectors are easily obtained. Finally, we note that the fact that we
can convert the original problem into an equivalent symmetric eigen-
value problem implies that the eigenvalues of the original problem are
real.

3. Non-Standard Eigenvalue Problems

We previously alluded to another type of eigenvalue problem which
may arise from a discussion of systems of ordinary differential equa-
tions. Suppose that we wish to find a vector x and a scalar λ such
that

(λ2A + λB + C)x = 0. (3.2)

We can convert this problem into a generalized eigenvalue problem by
first expressing y = λx. Then (3.2) becomes

λAy + By + Cx = 0

y = λx.

Hence,
[
B C

I 0

] [
y

x

]

= λ

[
−A 0
0 I

] [
y

x

]

.

We can then compute the eigenvalues of this 2n×2n generalized eigen-
value problem. This technique is similar to writing a second order ODE
as 2 first order ODE’s. We can also generalize this technique to higher
order polynomial problems.
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Lecture 4

Methods For Computing The

Largest Eigenvalue in

Modulus

4.1 The Power Method

Let A be an arbitrary n×n matrix with n linearly independent eigenvectors,
so that

Axi = λixi

for i = 1, 2, ..., n where

|λ1| ≥ |λ2| ≥ ... ≥ |λn|.

Algorithm 4.1. (The power method)

Let u(0) be an arbitrary vector with ‖u(0)‖2 = 1.
while unconverged do

v(k+1) = Au(k),

ck+1 = 1/‖v(k+1)‖2,

u(k+1) = ck+1v
(k+1).

end while

It is clear that

u(k+1) = ck+1Au(k),
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and therefore,

u(1) = c1Au(0)

u(2) = c2Au(1) = c2c1A
2u(0)

...

u(k) = ckck−1...c1A
ku(0)

= dkA
ku(0)

where dk =
∏k

j=1 cj . Since the eigenvectors are linearly independent, we
may express any vector as a linear combination of the eigenvectors. So,

u(0) =

n
∑

i=1

αixi.

Then,

u(k) = dkA
k

(

n
∑

i=1

αixi

)

= dk

n
∑

i=1

αiA
kxi

= dk

n
∑

i=1

αiλ
k
i xi

Furthermore, since ‖u(k)‖2 = 1,

dk =
1

‖Aku(0)‖2
.

Assumption 4.2. Let us now assume the following:

1. λ1 = λ2 = · · · = λp,

2. |λ1| > |λi+p| for i = 1, ..., n − p,

3.
∑p

i=1 |αi| 6= 0.

Then,

u(k) =
λk

1

∑p
i=1 αixi +

∑n
j=p+1 αjλ

k
j xj

‖λk
1

∑p
i=1 αixi +

∑n
j=p+1 αjλ

k
j xj‖2

=

(

λ1
|λ1|

)k
∑p

i=1 αixi +
∑n

j=p+1 αj

(

λj

|λ1|

)k

xj
∥

∥

∥

∥

∑p
i=1 αixi +

∑n
j=p+1 αj

(

λj

|λ1|

)k

xj

∥

∥

∥

∥

2

.
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Therefore,

u(k) = γk

p
∑

i=1

αixi + O

(

∣

∣

∣

∣

λp+1

λ1

∣

∣

∣

∣

k
)

, (4.1)

where |γk| tends to a constant as k → ∞. And, since every linear combina-
tion of eigenvectors corresponding to the same eigenvalue is an eigenvector,
we obtain:

Theorem 4.3. (Convergence of the Power Method) Under the as-

sumptions (4.2), the sequence of vectors generated from the power method,

u(k), converges to an eigenvector as k → ∞.

If |λ1| = |λ2|, but λ1 6= λ2, then the power method will not necessarily
converge to an eigenvector. For example, consider the matrix

A =

[

0 1
−1 0

]

.

For this matrix, λ1 = i and λ2 = −i. If u(0) =

[

1
1

]

, then u(k) will not

converge to an eigenvector. Later we shall consider in detail the problem of
computing eigenvalues of equal moduli.

4.2 Shifts

From (4.1) we see that u(k) will converge slowly to an eigenvector if
|λp+1|

|λ1|
is

close to 1. One possible remedy is to use the power method on the matrix
(A − αI). We refer to α as a shift. Recall that the eigenvalues of (A − αI)
are

λ1 − α, λ2 − α, ..., λn − α,

(i.e., shifted versions of the eigenvalues of A) and hence, the power method
applied to (A − αI) yields a sequence of vectors

u(k) = γk





p
∑

i=1

αixi +

n
∑

j=p+1

αj

(

λj − α

|λ1 − α|

)k

xj



 .

This may look like the same statement as before, but it should not be
interpreted as such, since some of the eigenvalue ratios in the second sum
may now be greater than 1 in modulus. For example, if all the eigenvalues
are real and positive, then if α > λ1,

0 > λ1 − α ≥ λ2 − α ≥ ... ≥ λn − α.

So, λn − α is the eigenvalue of largest magnitude, and so the power method
can be used to find λn (in this case) if a shift is employed. In general,
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the power method will converge to the eigenvalue farthest from the shift if
another distinct eigenvalue does not exist that is the same distance from the
shift.

If we wish for the power method (with shift) to converge to an eigenvector
that corresponds to λ1, the best choice for α is the one for which

max
p+1≤i≤n

∣

∣

∣

∣

λi − α

λ1 − α

∣

∣

∣

∣

= min .

Since this clearly requires some knowledge of {λi}
n
i=p+1, a heuristic procedure

is generally used for determining α.

4.3 Rayleigh Quotient

If the matrix A is symmetric, then the Rayleigh Quotient, defined by

µk =
u (k)T Au(k)

u (k)Tu(k)
,

provides an improved estimate of the eigenvalue, λ1. Recall that for a real
symmetric matrix, the eigenvalues are real and the eigenvectors are orthonor-
mal. Since

u(k) = γk





p
∑

i=1

αixi +

n
∑

j=p+1

αj

(

λj

|λ1|

)k

xj





and

Au(k) = γk



λ1

p
∑

i=1

αixi +
n
∑

j=p+1

αjλj

(

λj

|λ1|

)k

xj



 .

It follows that

µk =
u(k)T Au(k)

u(k)Tu(k)

=

γ2
k

(

∑p
i=1 αix

T
i +

∑n
j=p+1 αj

(

λj

|λ1|

)k

xT
j

)(

λ1
∑p

i=1 αixi +
∑n

j=p+1 αjλj

(

λj

|λ1|

)k

xj

)

γ2
k

(

∑p
i=1 αix

T
i +

∑n
j=p+1 αj

(

λj

|λ1|

)k

xT
j

)(

∑p
i=1 αixi +

∑n
j=p+1 αj

(

λj

|λ1|

)k

xj

)

=
λ1
∑p

i=1 α2
i +

∑n
j=p+1 α2

jλj

(

λj

|λ1|

)2k

∑p
i=1 α2

i +
∑n

j=p+1 α2
j

∣

∣

∣

λj

λ1

∣

∣

∣

2k

= λ1

(

1 + O

(

∣

∣

∣

∣

λp+1

λ1

∣

∣

∣

∣

2k
))

.

Thus, the Rayleigh Quotient µk has roughly twice as many digits of accuracy
as the components of u(k).
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4.4 Computing the Largest r Eigenvalues

Suppose we wanted the largest r eigenvalues. This could easily be acom-
plished using the power method. First, we can compute the largest eigen-
value λ1 and its corresponding eigenvector x1 accurately. Then, we will
perform the power method again, but this time forcing α1 = 0 by either
choosing an initial guess that is orthogonal to x1, or by subtracting off the
contribution to v(k) of x1 at each iteration by defining

v(k) = (I − x1x
T
1 )v(k),

and then let u(k+1) be a normalized v(k). We could also work with the matrix

A(2) = A − λ1x1x
T
1 .

Once the second eigenvalue and eigenvector are computed, we can repeat the
process, orthogonalizing against all previously computed eigenvectors until
we have constructed r eigenvectors.

4.5 Distinct Eigenvalues of Equal Modulus

As we pointed out earlier, if |λ1| = |λ2| and λ1 6= λ2, then the power method
will not converge for an arbitrary u(0). One method of overcoming this
difficulty is to employ an appropriately chosen shift. But, this shift might
be complex. Also, the best shift can be very hard to determine. Fortunately,
there are approaches which are more efficient which allow real arithmetic.

Let us assume that for the real matrix (no longer symmetric), A,

λ1 = ρeiθ

λ2 = ρe−iθ

and |λi| < |λ1| for i = 3, 4, ..., n. Furthermore, if we wish to use real arith-
metic in the numerical process, we should take u(0) as a real vector. Suppose

u(0) = α1x1 + α2x2 +
n
∑

i=3

αixi.

Then,

u(k) = dkA
ku(0)

= dk(α1λ
k
1x1 + α2λ

k
2x2 +

n
∑

i=3

αiλ
k
i xi)

= dk

(

α1ρ
keikθx1 + α2ρ

ke−ikθx2 +

n
∑

i=3

αiλ
k
i xi

)

,

29



so that if θ 6= 0, the elements of u(k) will tend to oscillate.
Let us assume temporarily that αi = 0 for i = 3, 4, ..., n. Then λ1 and

λ2 are the roots of the equation:

λ2 + pλ + q = 0

for some p and q. Now define,

v(k) = Au(k), and w(k) = Av(k).

Then, since
u(k) = dk(α1λ

k
1x1 + α2λ

k
2x2),

it follows that

w(k) + pv(k) + qu(k) = dk(α1(λ
2
1 + pλ1 + q)λkx1

+ α2(λ
2
2 + pλ2 + q)λkx2)

= 0.

Clearly, it is not the case that αj = 0 for j = 3, 4, ..., n in general, but one
would expect that for a sufficiently large k, the vector generated from the
power method, u(k), would lie predominantly in a 2-dimensional subspace
(i.e., αj would be small for j = 3, 4, ..., n). Accordingly, we wish to determine
{pk, qk} so that

w(k) + pkv
(k) + qku

(k) = ε(k)

and
‖ε(k)‖2 = min .

Thus, we will solve the linear least squares problem whose normal equations
are given by:

[

v(k)T v(k) v(k)T u(k)

v(k)T u(k) u(k)T u(k)

] [

pk

qk

]

= −

[

v(k)T w(k)

u(k)Tw(k)

]

(4.2)

(i.e., W (k)c(k) = −h(k)). It can easily be shown that if u(k) belongs to a
1-dimensional subspace associated with the eigenvectors of A (i.e., α1 or α2

are zero), then det(W (k)) = 0.
So, we can determine λ1 and λ2 as follows:

Algorithm 4.4. (Modified Power Method)

Let ε, η > 0 be prescribed tolerances, and perform several (k)

steps of the power method. Then define W (k) as in (4.2).

if det(W (k)) < ε then

Continue with the power method.
else
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Compute c(k).

if‖c(k+1) − c(k)‖ ≤ η then

Determine λ1 and λ2 from the roots of λ2 + pkλ + qk = 0.
else

Repeat after another step of the power method.
end if

end if

Note that complex arithmetic is not required in the calculation. Only after
the vector c(k) has converged are the (complex) eigenvalues computed.

The eigenvectors can be calculated in a simple manner once the eigen-
values are known. If

u = α1x1 + α2x2,

then,

v = α1λ1x1 + α2λ2x2

since v = Au. Now,

v − λ2u = α1(λ1 − λ2)x1

v − λ1u = α2(λ2 − λ1)x2,

and so,

x1 =
v − λ2u

‖v − λ2u‖2

x2 =
v − λ1u

‖v − λ1u‖2

4.6 A Very Bad Method

One could attempt to find all n eigenvalues of An×nat once in a manner sim-
ilar to the method used in the previous section, but it is not recommended.

The Cayley-Hamilton Theorem tells us that if

φ(λ) = λn − α1λ
n−1 − ... − αn = 0,

then

φ(A) = An − α1A
n−1 − ... − αnI = 0.
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As an aside, we can note that

An = α1A
n−1 + ... + αnI

∈ Pn−1(A)

⇒ An+1 = AAn = A(α1A
n−1 + ... + αnI)

= α1A
n + ...αnA

= α2
1A

n−1 + α2(1 + α1)A
n−2 + ... + αn(1 + α1)I

∈ Pn−1(A)

...

⇒ Am ∈ Pn−1(A).

Also, αnI = An − α1A
n−1 − ... − αn−1A

⇒ αnA−1 = An−1 − α1A
n−2 − ... − αn−1I

i.e., A−1 ∈ Pn−1(A).

Returning to our bad algorithm,

φ(A)u(0) = Anu(0) − α1A
n−1u(0) − ... − αnu

(0).

So, if we store the Krylov Sequence v(0) = u(0), v(i) = Av(i−1), for i =
1, ..., n, we can retrieve the characteristic polynomial by solving the system
of equations:

[v(n−1), ...,v(0)]







α1
...

αn






= v(n).

Then we can determine the eigenvalues from those of the Companion Matrix
of φ(λ).

Not only does this method only transform our problem into one with a
well defined structure, but the method generates a system of equations where
the left-most columns of the matrix are all strongly dominated by the same
eigenvector of A, so the system is highly ill-conditioned. Furthermore, we
have performed n, O

(

n2
)

operations (matrix-vector multiplies), followed by
a O

(

1
3n3
)

linear systems solve, yielding another eigenvalue problem. Even if
it wasn’t ill conditioned, it makes for a computationally expensive algorithm.

4.7 The Inverse Power Method

Algorithm 4.5. (Inverse Power Method)

Let u be an arbitrary vector with ‖u‖2 = 1, and µ0 be an arbitrary (real) scalar.
while µk is unconverged do

Solve for w(k+1): (A − µkI)w(k+1) = u
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Update: µk = w
(k+1)T Aw

(k+1)

w
(k+1)T

w
(k+1)

end while

We can make several variations in this procedure. For instance, our base
algorithm can be replaced by:

(A − µkI)w(k+1) =
w(k)

‖w(k)‖2
.

Here we would obtain cubic convergence. Also, it is often desirable to fix
µk = µ. In this manner, the factorization of (A − µkI) will not need to be
recomputed at each iteration, possibly saving computational work.
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Lecture 5

Finding Other Eigenvalues

and Perturbation Theory

5.1 The Inverse Power Method

A very effective method for increasing the rate of convergence of the power
method is the method of inverse iteration, also known as the inverse power

method. This method can be used to find any eigenvalue, provided an ap-
propriate shift is used. We shall discuss this algorithm for real, symmetric
matrices, but it is applicable to more general situations.

Algorithm 5.1. (Inverse Power Method)

Let u be an arbitrary vector with ‖u‖2 = 1, and µ0 be an arbitrary (real) scalar.
while µk is unconverged do

Solve for w(k+1): (A − µkI)w(k+1) = u

Update: µk = w
(k+1)T Aw

(k+1)

w(k+1)T w(k+1)

end while

Again, let us write

u =
n∑

i=1

αixi, where
n∑

i=1

α2
i = 1,

and {xk} are the eigenvectors of A. Let us further assume that λ1 = λ2 =
... = λp and that u has some contibution in the direction of an eigenvector
that corresponds to λ1 (i.e.,

∑p
i=1 |αi| > 0).

If µ0 is not an eigenvalue of A, then,

w(1) = (A − µ0I)−1u

=

n∑

i=1

αi

λi − µ0
xi
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Hence, if µ0 is a good approximation to λ1, we would expect w(1) to be a
good approximation to an eigenvector that corresponds to λ1. In general,

w(k) =

n∑

i=1

αi

λi − µk−1
xi,

and hence,

Aw(k) =
n∑

i=1

αiλi

λi − µk−1
xi.

And by orthogonality of the eigenvectors (A = AT ),

µk+1 =
w(k+1)T Aw(k+1)

w(k+1)T w(k+1)

=

∑n
i=1

α2

i λi

(λi−µk)2

∑n
j=1

α2

j

(λj−µk)2

.

Hence,

µk+1 − λ1 =

∑n
i=1 α2

i
λi−λ1

(λi−µk)2

∑n
j=1

α2

j

(λj−µk)2

=

∑n
i=p+1 α2

i
λi−λ1

(λi−µk)2

∑n
j=1

α2

j

(λj−µk)2

if λ1 = λ2 = ... = λp ,

= (λ1 − µk)
2







∑n
i=p+1 α2

i
λi−λ1

(λi−µk)2

∑p
j=1 α2

j +
∑n

j=p+1 α2
j

(λ1−µk)2

(λj−µk)2






.

Thus,

µk+1 − λ1

(µk − λ1)2
=

∑n
i=p+1 α2

i
λi−λ1

(λi−µk)2

∑p
j=1 α2

j +
∑n

j=p+1 α2
j

(λ1−µk)2

(λj−µk)2

.

Therefore, if µk → λ1 as k → ∞,

lim
k→∞

uk+1 − λ1

(µk − λ1)2
=

∑m
i=p+1

α2

i

λi−λ1
∑p

j=1 α2
j

.

Thus, if the inverse power method converges, the rate of convergence is
quadratic. It can be shown that in most situations, µk will converge to an
eigenvalue.

It was mentioned earlier that if µ0 is a good approximation to λ1, we
would expect w(1) to be a good approximation to an eigenvector that corre-
sponds to λ1. However, if µ0 is a good approximation to λj, then we would
expect that w(1) would be a good approximation to an eigenvector that cor-
responds to λj . We could proceed as before with this goal in mind, and show
that in this case, if µk converges to λj, it would do so quadratically.
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5.2 Note: Linear Systems Error Bounds

If we wish to solve Ax = b for the vector x, and we actually obtain from
our algorithm the vector ξ, then if we express x = ξ + e for some vector e

which represents computational errors, then we can deine the residual, r,

r ≡ b− Aξ

= A(x − ξ)

= Ae

⇒ e = A−1r.

So, we can place the following bounds on the error vector:

‖r‖2 ≤ ‖A‖2‖e‖2

⇒
‖r‖2

‖A‖2
≤ ‖e‖2 ≤ ‖A−1‖2‖r‖2.

Notice that these bounds are directly related to the matrix, A and its inverse.
It is rather surprising to note that the bounds that we will develop for
eigenvalue and eigenvector perturbation are not of this form.

5.3 Error Bounds on Eigenvalues

Let us suppose A is symmetric (i.e., A = AT ). Then given an estimate of
an eigenvector, y, we can use the Rayleigh Quotient as an estimate of the

eigenvalue, α = y
T Ay

yT y
. We know that

λmin(A) ≤ α ≤ λmax(A).

Let us define the residual with respect to the eigenvalue problem, r, as

r = Ay − αy = (A − αI)y.

Then,

rT r

yTy
=

yT (A − αI)T (A − αI)y

yT y

=
yT (AαI)2y

yTy

≤ max{(A − αI)2}.

So,

min
i

|λi − α|2 ≤
rT r

yT y
=

‖r‖2
2

‖y‖2
2

≤ max
i

|λi − α|2.

Hence, there must be at least one eigenvalue inside of the interval surround-
ing our estimate, [α − ‖r‖2

‖y‖2
, α + ‖r‖2

‖y‖2
]. One should notice that this bound is

much easier to compute than those for solving linear systems of equations.
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5.4 Solutions to Nearby Eigenvalue Problems

Suppose we have found an eigenpair, (λi,xi), of the symmetric matrix, A.
How close is λi to an eigenvalue of the nearby matrix (A + εE) where E is
symmetric, ‖E‖2 = 1, and ε > 0 is a small parameter? We have

r = (A + εE)xi − λixi

= εExi

which yields

‖r‖2 ≤ ε.

Therefore, there must be an eigenvalue of (A + εE) inside the interval [λi −
ε, λi + ε].

5.5 The Gerschgorin Disk Theroem

Given Ax = λx, looking at one row of this system of equations,

arrxr +
∑

s 6=r

arsxs = λxr

(arr − λ)xr = −
∑

s 6=r

arsxs

Let us assume that |xr| ≥ |xs| for s = 1, 2, ..., n. Then,

(arr − λ) = −
∑

s 6=r

ars
xs

xr

|arr − λ| ≤
∑

s 6=r

|ars| ≡ ρr

Hence, the union of all disks, |aii − µ| ≤ ρi, contain all the eigenvalues of A.

For example, let

An×n =










2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2










.

Then ρ1 = ρn = 1, and ρj = 2 for j = 2, 3, ..., (n − 1). The Gerschgorin
Disk Theorem tells us that all the eigenvalues lie in the disk, |λ − 2| ≤ 2.
Furthermore, since A = AT , 0 ≤ λ ≤ 4. We could also conclude that the
matrix A + σI is positive definite for any σ > 0.
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Another trick that we can use is to rescale off disgonal elements using
the similarity trasformation B = DAD−1 where D is a diagonal matrix.
Then the elements of B are given by bij = aij

di

dj
. Then the Gerschgorin Disk

Theorem tells us:

|aii − λ| = |bii − λ| ≤
∑

i6=j

|aij |

∣
∣
∣
∣

di

dj

∣
∣
∣
∣
.

To make this effect more clear, suppose A =

[
1 1000

10−9 1

]

. Then we

know all of the eigenvalues lie on a disk |λ − 1| ≤ 1000. But if we choose D

such that d1 = 1 and d2 = 106, then

B = DAD−1 =

[

1 1000d1

d2

10−9 d2

d1
1

]

.

We can conclude that all of the eigenvalues of A lie in the disk |λ−1| ≤ 10−3.
Since B is symmetric, we can also conclude that the eigenvalues are real and
lie in the interval [1 − 10−3, 1 + 10−3].

One can also prove as a corollary to the Gerschgorin Disk Theorem that
if any of the disks are disjoint, then an eigenvalue must lie in that disk.
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Lecture 6

More Perturbation Theory

and Error Bounds, and

Jacobi’s Algorithm

6.1 The Condition Number of an Eigenvalue

If Ax = λx, we call x an eigenvector, or more precisely, a right eigenvector of
A. Similarly, if y∗A = λy∗, we call y a left eigenvector of A. Note that any
left eigenvector of A is a right eigenvector of A∗. If the A is diagonalizable,
then we can write

y∗

jxi = 0 for i 6= j.

Consider the matrix (A+εB) with right eigenvector x1(ε), and eigenvalue
λ1(ε). Assume further that |bij | ≤ 1. Then it can be shown that since A is
diagonalizable, λ1(ε) can be expressed as a power series in ε such that

λ1(ε) = λ1 + k1ε + k2ε
2 + · · · .

So,
λ1(ε) − λ1

ε
→ k1, as ε → 0.

Similarly, x1(ε) can be expressed as a power series in ε such that

x1(ε) = x1 + εz1 + ε2z2 + · · · .

Since A is diagonalizable, we can express the vectors zi as linear combi-
nations of the eigenvectors of A, i.e. zi =

∑n
j=1 tjixj. So,

x1(ε) = x1 + ε

n
∑

j=1

tj1xj + ε2
n
∑

j=1

tj2xj + · · ·

= (1 + εt11 + ε2t12 + · · · )x1 + (εt21 + ε2t22 + · · · )x2

+ · · · + (εtn1 + ε2tn2 + · · · )xn.
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Since this is an eigenvector, let us rescale it so that the coefficient of x1 is 1,
then

x1(ε) = x1 +





∞
∑

j=1

εj t̃2j



x2 +





∞
∑

j=1

εj t̃3j



x3 + · · · +





∞
∑

j=1

εj t̃nj



xn

≡ x1 +
n
∑

j=2

fj(ε)xj .

Before we proceed, let us make two notational definitions and observations.
Let s(λi) ≡ |y∗

i xi|, and also, βij ≡ y∗

i Bxj. Thus, |si| ≤ ‖yi‖2‖xi‖2 = 1, and
|βij | ≤ σ1(B) = ‖B‖2.

Now,

(A + εB)x1(ε) = λ1(ε)x1(ε).

Looking at the terms that do not include ε, we obtain the equation,

Ax1 = λ1x1.

The terms of order ε yield the equation:

εA(t̃21x2 + t̃31x3 + · · · + t̃n1xn) + εBx1

= ε(k1x1 + λ1t̃21x2 + λ1t̃31x3 + · · · + λ1t̃n1xn).

That is,

A

(

n
∑

i=2

t̃i1xi

)

+ Bx1 = λ1

(

n
∑

i=2

t̃i1xi

)

+ k1x1

(A − λ1I)

(

n
∑

i=2

t̃i1xi

)

+ Bx1 = k1x1

n
∑

i=2

t̃i1(λi − λ1)xi + Bx1 = k1x1.

So, due to the orthogonality of the right and left eigeivectors, multiplying
this equation on the left by y∗

1 yields

y∗

1Bx1 = k1y
∗

1x1

and therefore

|k1| =

∣

∣

∣

∣

y∗

1Bx1

y∗

1x1

∣

∣

∣

∣

=
|β11|

s(λ1)
.

Hence,

|λ1(ε) − λ1| =
|β11|

s(λ1)
ε + O

(

ε2
)

.
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That is to say, the perturbation in the eigenvalue is proportional to s(λi)
−1

for each i. Thus we call s(λi)
−1 the condition number of λi. Furthermore,

∣

∣

∣

∣

λi(ε) − λi

ε

∣

∣

∣

∣

→
‖B‖2

s(λi)

as ε → 0.

6.2 Perturbation of Eigenvectors

To find the first order perturbation of the eigenvectors, we proceed as before,
arriving at the equation

n
∑

i=2

t̃i1(λi − λ1)xi + Bx1 = k1x1.

Now, we shall multiply on the left by y∗

j , yielding

y∗

j

n
∑

i=2

t̃i1(λi − λ1)xi + y∗

jBx1 = k1y
∗

jx1

⇒ (λj − λ1)t̃j1y
∗

jxj + βj1 = 0

for j = 2, 3, ..., n. Therefore, |t̃j1| =
∣

∣

∣

βj1

(λj−λ1)s(λj)

∣

∣

∣
and

‖x1(ε) − x1‖2 ≤ ε

n
∑

j=2

∣

∣

∣

∣

βj1

(λ1 − λj)s(λj)

∣

∣

∣

∣

+ O
(

ε2
)

.

Again, we notice that the perturbation in the eigenvector is proportional
to s(λj)

−1, but in this case, each s(λj) may contribute. Furthermore, if
the eigenvalues are close to one another, we may have difficulty computing
eigenvectors.

6.3 Perversity Theorem

One of the more troublesome (or troubling may be more appropriate) results
related to the computation of eigenvalues and eigenvectors is the following
theorem:

Theorem 6.1. (Perversity Theorem) Let A have distinct eigenvalues. If,

for some eigenvalue λ, s(λ) < 1, then there exists a matrix E such that λ is

a repeated eigenvalue of A + E, and

‖E‖2

‖A‖2
≤

s(λ)
√

1 − s2(λ)
.

Thus, even if the eigenvalues are distinct, if one eigenvalue is suffi-
ciently ill-conditioned, then computation of the eigenvalues, and especially
the eigenvectors, may be very difficult.
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6.4 Jacobi’s Algorithm, Preliminary Details

For this discussion, we shall assume that A is symmetric, and all the eigen-
values of the matrix are desired. Note that since A is symmetric, all the
eigenvalues are well-conditioned.

The basic idea behind Jacobi’s Algorithm is that by performing transfor-
mations of the form A(k+1) = QT

k A(k)Qk, where Qk is an orthogonal matrix,
we can reduce A to its Schur Form. Under the assumption that A is symmet-
ric, this will yield a diagonal matrix, and an orthogonal set of eigenvectors.

The particular orthogonal matrices we will employ are called Jacobi Ro-

tations. Recall that in 2-D, if we wish to rotate a vector by an angle θ, we
pre-multiply it by the matrix

T =

[

cos θ sin θ

− sin θ cos θ

]

.

This concept can be generalized to higher dimensions, whereby a vector is
rotated about one of its principle axes, via pre-multiplication by the matrix,

Tij =













I

cos θ sin θ

I

− sin θ cos θ

I













.

Tij is the identity matrix with its (i, j) and (j, i) elements replaced by ± sin θ,
respectively, and its (i, i) and (j, j) elements replaced by cos θ. It is easy to
verify that this matrix is orthogonal.

The basic question which will be discussed in the next lecture is, “How
do we choose (ik, jk) to define our matrices Tik ,jk

?” We will choose (ik, jk) so
that the off-diagonal elements become smaller, but how do we assure this?
Let DA denote the diagonal matrix whose non-zero elements are the diagonal
of the matrix, A. Let us also define,

t2(A) ≡ ‖A − DA‖
2
F =

∑

i6=j

|aij |
2.

We shall describe a sequence as monotonic (decreasing), if

t2(A(k+1)) ≤ t2(A(k)).
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Let C = T T
ij ATij . Then ‖C‖F = ‖A‖F , and

t2(C) − t2(A) = ‖C − DC‖
2
F − ‖A − DA‖

2
F

= ‖T T
ij ATij − DC‖

2
F − ‖A − DA‖

2
F

= (
∑

i,j

a2
ij −

∑

i

c2
ii) − (

∑

i,j

a2
ij −

∑

i

a2
ii)

=
∑

i

(a2
ii − c2

ii)

= a2
ii + a2

jj − c2
ii − c2

jj.

The last line is a result of the structure of Tij .
Now let us reduce our scope from Tij , C, and A, to the matrices T ,

C̃ =

[

cii cij

cji cjj

]

, and Ã =

[

aii aij

aji ajj

]

.

Notice that Ã and C̃ are symmetric, and C̃ = T T ÃT . Furthermore,

‖Ã‖2
F = a2

ii + a2
jj + 2a2

ij .

C̃ is similar. Thus,

t2(C) − t2(A) = (a2
ii + a2

jj) − (c2
ii + c2

jj)

= (‖Ã‖2
F − 2a2

ij) − (‖C̃‖2
F − 2c2

ij)

= 2(c2
ij − a2

ij).

Now, we can conclude that our method is monotonic if for every iteration,
|cij | < |aij |, which is very simple to check.
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Lecture 7

Jacobi Algorithm and

Tri-Diagonal Form

7.1 Jacobi Algorithm

As described in the previous section, the Jacobi Algorithm will construct
a sequence of matrices {A(k)} via unitary similarity transformations using
rotation matrices of the form

Tij =













I

cos θ sin θ

I

− sin θ cos θ

I













.

Hence,
A(k+1) = T T

ik,jk
A(k)Tik,jk

and if A is a symmetric matrix, A(k) → Λ as k → ∞ (i.e.,

t2(A(k)) =
∑

i6=j

(a
(k)
ij )2 → 0

as k → ∞). Note that in doing so, we also obtain an orthogonal set of
eigenvectors as

∏

k Tik,jk
, if an infinite number of iterations are performed

in exact arithmetic. But, after a finite number of iterations, we still obtain
an orthogonal set of estimates for the eigenvectors.

We have already shown that if we define C = T T
ij ATij, then ‖A‖2

F =

‖C‖2
F , and t2(C) − t2(A) = 2(c2

ij − a2
ij). Our goal is to define a monotonic

(decreasing) sequence, hence we want |cij | < |aij |. We can express cij in
terms of elements of A and θ as

cij = aij(cos
2 θ − sin2 θ) + (ajj − aii) cos θ sin θ

= aij cos(2θ) +
1

2
(ajj − aii) sin(2θ).
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The classical approach (although clearly not the only possible approach) is
to choose θ such that cij = 0. This yields the equation

0 = aij cos(2θ) +
1

2
(ajj − aii) sin(2θ)

which can be rearranged to obtain

tan(2θ) = τ =
2aij

aii − ajj

,

and if we define t = tan θ, we obtain the quadratic equation

0 = t2 + 2
t

τ
− 1

which has the solution

t =
−1 ±

√
1 + τ2

τ
.

If we always choose the smallest t, then we are always defining θ such that
|θ| ≤ π

4 . This choice will improve the computational stability of the method.
We can then define the matrix Tij according to

cos θ = c =
1√

1 + t2
, sin θ = s = tc.

A different perspective on the how to generate the matrix C is to look at
the eigenvalues of Ã.

7.2 Choice Of Indices

One question remains: How does one choose (i, j)? One could choose (I, J)
such that

|aIJ | ≥ max
i6=j

|aij |

(i.e., the largest off-diagonal element is to be annihilated). Then

aIJ |2 ≥ 1

n(n − 1)
t2(A(k)).

So,

t2(A(k+1)) = t2(A(k)) − 2a2
IJ

≤ t2(A(k)) − 2

n(n − 1)
t2(A(k))

=

(

1 − 2

n(n − 1)

)

t2(A(k))

≤
(

1 − 2

n(n − 1)

)k

t2(A(0)).
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In actuality, we have shown convergence provided that

|aIJ |2 ≥ 1

n(n − 1)

∑

i6=j

(aij)
2

(i.e., aIJ is larger than the average off-diagonal element).

This analysis shows that convergence is at least linear. It has, however,
been shown that asymptotically, convergence is quadratic; i.e.,

t(A(k+1)) = c[t(A(k))]2

for some c, provided k is sufficiently large.

A second alternative is to sequentially walk through the indices. This will
eliminate the rather costly search to find the maximal off-diagonal element.
Forsythe and Henrici proved convergence for this method under the condition
|θ| ≤ π

4 .

A third approach is to implement a threshold-based search. Suppose,
for example, that |aij| ≤ 1. Then, in the first sweep, one could choose to
annihilate all elements > 1

2 . In the next sweep, you could ennihilate all
elements > 1

4 , and so on.

7.3 Some Implementation Details

What should be chosen as a termination criterion? We know that with
infinite precision calculation, for all k,

t2(A(k+1)) < t2(A(k)).

So, if this condition is violated, it must be a result of roundoff errors, so we
can stop our computation. An alternative to this is to look at the size of the
off diagonals, relative to the matrix. One might choose

t2(A(k+1))

‖A‖2
F

≤ ε

as grounds for termination.

How many iterations are required for convergence? If we use the sequen-
tial walk through the indices to define one sweep (the second alternative),

N = n(n−1)
2 rotations are used in one sweep. The heuristic that the number

of sweeps is O(log N) tends to be reasonable.

Which architecture is most suited for this algorithm? On a serial com-
puter, the Jacobi algorithm is considered impractical for very large problems.
However, we can exploit the fact that the rotation Tij only affects the ith
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and jth rows and columns of the matrix to obtain a large amount of paral-
lelism in our implementation. Consider, for example, the following rotations
applied to a 4 × 4 matrix:

(1, 2) (3, 4)

(1, 3) (2, 4)

(1, 4) (2, 3)

Each pair of rotations shown can be performed simultaneously, and inde-
pendently (assuming all row rotations are performed before performing any
column rotations). These 6 rotations span all rotations needed for one sweep.
In general, approximately N

2 processors can be used efficiently with this type
of implementation.

How accurate is the algorithm? Let us define the following:

r : # of sweeps

di : computed eigenvalues

u : machine precision.

Wilkinson showed that

n
∑

i=1

(di − λi)
2 ≤ (N + kr)‖A‖F u.

A refined error analysis by Demmel and Veselic shows that if A is positive
definite,

|λ̂i − λi(A)|
λi(A)

≈ uκ2(D
−1AD−1)

where D = diag(
√

a11,
√

a22, ...,
√

ann). The termination criterion plays a
role in the above analysis as well.

7.4 Reduction to Tri-Diagonal Form

Clearly, the most significant amount of work required by the Jacobi Algo-
rithm is the application of the rotations to eliminate all of the off-diagonal
elements. If we had a tri-diagonal matrix to work with at each step, the
application of these rotations would preserve the tri-diagonal structure, and
hence our computational workload would be dramatically reduced. Fortu-
nately, we can always perform a unitary similarity transformation on any
symmetric matrix to reduce it to a tri-diagonal matrix.

Consider the rotation matrix

T =

[

cos θ sin θ

− sin θ cos θ

]

.
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We wish to choose θ so that if we apply T to the vector a =

[

a

b

]

, we obtain

Ta = αe1:
[

cos θ sin θ

− sin θ cos θ

] [

a

b

]

=
√

a2 + b2

[

1
0

]

.

It follows that

sin θ =
b√

a2 + b2
, cos θ =

a√
a2 + b2

.

Similarly, given an arbitrary symmetric matrix A, we can pick T23 so that the
3rd element of the first column is eliminated. Then, forming the similarity
transformation A(′) = T23AT T

32,

A(′) =

















× × 0 × . . .

× × . . .

0
...

×
...

















.

Note that this would not have been the case if we had chosen T13 for this
purpose.

We could proceed down the first column, and across the first row:

A(′′) = T24AT T
24 =





















× × 0 0 × . . .

× × . . .

0
...

0
×
...





















,

ultimately yielding

A(2) = T2nT2,n−1 · · · T23AT T
23T

T
24 · · ·T T

2n

=

















a11 a
(2)
21 0 . . . 0

a
(2)
21 a

(2)
22 a

(2)
32 . . .

0 a
(2)
32

...
...

0

















.

We then proceed to eliminate all elements beyond the third of the second
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column and row in the same fashion:

A(3) = T3nT3,n−1 · · ·T34AT T
34T

T
35 · · ·T T

3n

=























a11 a
(2)
21 0 . . . 0

a
(2)
21 a

(2)
22 a

(3)
32 0 . . . 0

0 a
(3)
32 a

(3)
33 a

(3)
34 . . .

... 0 a
(3)
34

...
...

0 0























.

Hence, after performing n(n−1)
2 row and column rotations (which is essen-

tially one sweep of the Jacobi Algorithm), we obtain a tri-diagonal matrix
with the same eigenvalues as A. Hence we have obtained the decomposition,

A = QJQT

where

J =



















a1 b1 0 . . . 0

b1 a2 b2
. . .

...

0 b2
. . .

. . . 0
...

. . .
. . . an−1 bn−1

0 . . . 0 bn−1 an



















.

J is called a Jacobi matrix. Once we have computed the eigenvalues and
eigenvectors of J , we obtain the decomposition

J = ZΛZT

of J , which yields the decomposition

A = QJQT = QZΛZTQT ,

of A. It follows that the columns of QZ are the eigenvectors of A.

The reduction to tri-diagonal form does not need to be accomplished by
Givens rotations as described above. Householder transformations could be
used to eliminate all elements below the sub-diagonal in a column in one
step (and similarly across the row). The Lanczos Method also produces a
tridiagonal matrix, as we shall later see.

If A is not symmetric, one often performs the above reduction steps, but
instead of obtaining a tri-diagonal matrix, an upper Hessenberg matrix is
obtained. More about this structure will be said in the next lecture.
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7.5 Polynomial Recurrence Methods

Once we have a tridiagonal matrix J , methods which compute the roots of
polynomials, such as Newton’s Method, can be used to find the largest eigen-
value, the smallest eigenvalue, and all eigenvalues inside of an interval. These
methods take advantage of recurrence relations developed by expanding the
determinant of (J − λI).

Let

Jk =













a1 b1

b1
. . .

. . .
. . . ak−1 bk−1

bk−1 ak













(i.e., Jk is the leading k × k minor of J). Furthermore, let

δk(λ) = det(Jk − λI).

So,

δ0(λ) ≡ 1,

δ1(λ) = (a1 − λ),

δ2(λ) = det

[

a1 − λ b1

b1 a2 − λ

]

= (a2 − λ)δ1(λ) − b2
1δ0(λ),

δk+1(λ) = det















Jk − λI

0
...
0
bk

0 . . . 0 bk ak+1 − λ















= (ak+1 − λ)δk(λ) − bk det

[

Jk−1 − λI 0

0 . . . 0 bk−1 bk

]

= (ak+1 − λ)δk(λ) − b2
kδk−1(λ).

Note that all orthogonal polynomials satisfy similar three-term recurrence
relations, so perhaps they could be used in methods of this nature.

We could use iterative methods like Newton’s Method to find λ such
that δn(λ) = 0. In these methods, the above recurence relation would be
invaluable. We can easily compute derivatives of δn(λ) as according to

δ′k+1(λ) = (ak+1 − λ)δ′k(λ) − δk(λ) − b2
kδ

′
k−1(λ).

Then we could iterate as follows:

λ(n+1) = λ(n) − δn(λ(n))

δ′n(λ(n))
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using recursive evaluations of δn and δ′n. This method parallelizes very well,
for if we have r estimates of eigenvalues, then we could use r processors
simultaneously. The only problem is that good initial guesses are needed.

Other methods include the construction of Sturm Sequences. These se-
quences tell you how many eigenvalues are to the right and left of a particular
value, λ∗, based upon the signs of δj(λ

∗) for j = 1, 2, ..., n. These sequences
can be very useful for isolating eigenvalues within an interval, and for ob-
taining good estimates for use with Newton’s Method. It can also be useful
for determining if a matrix is positive definite.
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Lecture 8

Non-Symmetric Methods

and QR Iteration

8.1 Polynomial Recurrence Methods

Suppose A 6= AT , A is real valued, and has been reduced to an Upper
Hessenberg matrix:

H =

















× × . . . ×
× × . . .

0 × . . .
...

...
. . .

. . .
. . .

0 . . . 0 × ×

















,

where H = QAQT , and QTQ = I. If we only need to find a few eigenvalues,
several of the ideas previously introduced for J will work for H. So we must
ask, how do we evaluate det(H − λI) for a particular eigenvalue estimate,
λ?

Suppose we had a matrix, H̄ such that

H̄ =

















× × . . . × h̄1n

h̄21 × . . . × 0

0 h̄32
. . .

...
...

...
. . .

. . . × 0
0 . . . 0 h̄n,n−1 0

















,

Then, det(H̄) = h̄1n(h̄21h̄32 · · · h̄n,n−1), which is easily computed.
To achieve this, we shall add to the last column of H a linear combination

of the other columns of H such that the resulting last column is of the desired
form. This is equivalent to post multiplying H by a matrix, X:

H̄ = HX = H[e1, e2, ..., en−1,x]
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where xn = 1. Then

det(H̄) = det(H) det(X)

= det(H) · (−1)n(det(In−1))

= det(H) · (−1)n = (−1)n det(H).

Note that we have expanded detX about the last row, so there would be a
sign change if n is odd. But the characteristic polynomial of H̄ has the same
roots as that of H, so λ(H̄) = λ(H).

Now, we need to find xi so that we can take the determinant of (H̄−λI).
Choosing xi so that the last (n − 1) elements of (H − λI) are eliminated is
equivalent to solving the system of equations:

x1h21 +x2(h22 − λ) + . . . +xn−1h2,n−1 = −h2n,

x2h21 +x3(h33 − λ) + . . . +xn−1h3.n−1 = −h3n,
. . .

...
...

xn−1hn,n−1 = −(hnn − λ).
(8.1)

Notice that this (n− 1)× (n− 1) linear system is upper triangular, thus the

solution can be obtained in O
(

n2

2

)

operations. Then,

det(H−λI) = (h1n+(x1(h11−λ)+x2h12+· · ·+xn−1h1,n−1))(h21h32 · · ·hn,n1
),

and since we are only concerned with the roots of the characteristic polyno-
mial, we can ignore the factor (h21 · · · hn,n−1).

As before, we may wish to compute d
dλ

(det(H − λI)), or ignoring the
extra factor,

d

dλ

(

det(H − λI)

h21 · · ·hn,n−1

)

=
d x1

dλ
(h11 − λ) +

d x2

dλ
h12 + · · · + d xn−1

dλ
h1,n−1 − x1.

The terms d xi

dλ
can be found by differentiating the system of equations

(8.1) that defined the xi, yielding:

x′

1h21 +x′

2(h22 − λ) + . . . +x′

n−1h2,n−1 = x2,

x′

2h21 +x′

3(h33 − λ) + . . . +x′

n−1h3.n−1 = x3,
. . .

...
...

x′

n−1hn,n−1 = 1.

(8.2)

If a second (or higher) derivative is required, we differentiate (8.2), which
entails replacing xi in the righthand side vector with 2x′

i (and obviously
replacing the variables x′

i in the system with the new variables x′′

i ).
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Lecture 9

QR Iteration

9.1 The Basic Iteration

In this lecture we will discuss the next evolutionary step from the power
method to a practical method for computing all of the eigenvalues and eigen-
vectors of a matrix A, the QR iteration:

Algorithm 9.1. (QR Iteration)

Let A ≡ A(0).
while unconverged do

Form a QR decomposition of A(k) such that Q is orthogonal,

and R is upper triangular: A(k) = Q(k)R(k).

Multiply the factors in reverse order: A(k+1) = R(k)Q(k).
end while

It is easily seen that each iteration performs a unitary similarity transfor-
mation of A(k):

A(k+1) = R(k)Q(k) = Q(k T )A(k)Q(k).

In general,

A(k+1) = Q(k T ) · · ·Q(0 T )AQ(0) · · ·Q(k).

9.2 Aside: LR Iteration

Another algorithm for computing eigenvalues, called LR iteration was de-
vised by Rutishauser. This algorithm is not as numerically stable as QR

iterations, but can be used for some sparse data structures.

Algorithm 9.2. (LR Iteration)
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Let A ≡ A(0).
while unconverged do

Form an LU decomposition of A(k) such that L is lower

triangular, and R is upper triangular: A(k) = L(k)R(k).

Multiply the factors in reverse order: A(k+1) = R(k)L(k).
end while

If L is non-singular, this iteration amounts to the application of similarity
transformations on A since A(k+1) = L(k) −1A(k)L(k).

9.3 Convergence of QR Iteration

Let us assume

|λ1| > |λ2| > ... > |λn| > 0.

Perhaps the use of a shift is necesary for the assumption that the eigenvalues
have non-zero modulus, but we shall assume it for simplicity. This means
that A = XΛX−1, where Λ is diagonal, and ordered by modulus as described
above. Then,

Ak = XΛkX−1

≡ XΛkY.

Let us take a QR decomposition of X, and an LU decomposition of Y .
Thus X = QR, where R is upper triangular, and Q is unitary; and Y = LU ,
where L is unit lower triangular, and U is upper triangular. Note that a
QR decomposition will always exist, but the LU decomposition exists if and
only if

det













y11 . . . y1k

...
. . .

...
yk1 . . . ykk












6= 0 for k = 1, 2, ..., n.

We shall say more about this later.

Inserting these decompositions into our expression for Ak:

Ak = QRΛkLU

= QR(ΛkLΛ−k)ΛkU.

Note:

ΛkLΛ−k =













1
. . .

0

lij

(

λi

λj

)k . . .

1













(i > j).
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So,
ΛkLΛ−k = I + E(k),

where E(k) → 0 as k → ∞ since 0 <
|λi|

|λj |
< 1 for i > j. Thus,

Ak = QR(I + E(k))ΛkU

= Q(R + RE(k)R−1R)ΛkU

= Q(I + RE(k)R−1)RΛkU

≡ Q(I + F (k))RΛkU,

where F (k) → 0 as k → ∞. We can now define a QR decomposition of
I + F (k) = Q̃(k)R̃(k) such that as F (k) → 0, Q̃(k) → I and R̃(k) → I. Then,

Ak = QQ̃(k)R̃(k)RΛkU

= (QQ̃(k))(R̃(k)RΛkU) (9.1)

= (unitary)(upper triangular).

Thus, we have created a QR decomposition of Ak. To establish a link be-
tween this decomposition and a sequence of iterates A(k) generated by QR

iteration, we employ the following result:

Proposition Let P (0), . . . , P (k) be a sequence of orthogonal matrices, and
let A be an invertible matrix. Then, for j = 0, . . . , k,

Aj = P (j)T (j),

where T (j) is upper triangular, if and only if the sequence A(0) ≡ A,A(1), . . . , A(k)

defined by
A(k) = P (k)∗AP (k)

is a sequence of QR iterates of A; i.e. for j = 0, . . . , k − 1,

A(j+1) = Q(j)∗A(j)Q(j)

for some orthogonal matrix Q(j), and Q(j)∗A(j) is upper triangular.

By this proposition,
A(k) = P (k)∗AP (k)

is a QR iterate for each k. Thus,

A(k) = Q̃(k)∗Q∗AQQ̃(k).

But,
A = XΛX−1 = (QR)Λ(R−1Q∗).

So,
A(k) = Q̃(k)∗RΛR−1Q̃(k)
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which converges to an upper triangular matrix as k → ∞, due to the conver-
gence of Q̃(k)∗ to I. We can apply the converse of the propostion to conclude
that for any sequence {A(k)} of QR iterates of A, we obtain a QR decom-
position of Ak of the form (9.1), where Q̃(k) and R̃(k) must both converge to
I.

The rate of convergence is dependent on the spacing of the eigenvalues.
In particular, λi

λj
is responsible for the rate at which ΛkLΛ−k → I.

9.4 Disorder of Eigenvalues

What happens if we cannot construct the LU decomposition? That is, sup-
pose

det













y11 . . . y1k

...
. . .

...
yk1 . . . ykk












= 0

(i.e., we have encountered a zero along the diagonal of Y (k) during Gaussian
Elimination). We shall then permute the rows of Y such that

ΠY = LU

exists. Thus,

Ak = XΛkY

= XΛkΠT LU

= (XΠT )(ΠΛkΠT )LU.

Then define
∆k = ΠΛkΠT = diag(λk

i1
, ..., λk

in ).

Now, ∆k is Λk with the eigenvalues re-ordered, and (XΠT ) are the eigen-
vectors reordered in a corresponding manner.

Now we can proceed with the analysis as before, and the convergence
rate depends on the rate at which the (p, q) element of (∆kL∆−k) tends to
zero. But,

(∆kL∆−k)pq =

(

λip

λiq

)k

lpq.

So, it is possible for |λip | > |λiq |, and we should be concerned that the method
might not converge. Fortunately, this is not the case. In our construction of
Π, we only permuted rows if a zero was encountered along the diagonal. In
applying the permutation, we introduced a zero element in the (p, q) element
of L, so (∆kL∆−k)pq = 0 in this case.

If there were a block of eigenvalues with the same modulus, say

|λt| = |λt+1| = ... = |λt+s|,
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then the QR iteration would converge to an upper triangular matrix, with
the exception of an s × s dense block along the diagonal.

9.5 Uniqueness of the Hessenberg Form

It can be shown that the Hessenberg form of A (i.e., A = QHQ∗) has
the same uniqueness property as the QR factorization. Recall that the
QR factorization is “unique” provided the starting vector, q1, is specified,
and the signs of the diagonal elements of R are specified. For Hessenberg
form, uniqueness can be shown provided q1 is specified, within pre and
post-multiplication of H by a diagonal matrix, D = diag(±1, ...,±1) (i.e.,
multiplication of each vector qi by ±1). If complex arithmetic is necessary,
then D will be diagonal with arbitrary numbers of unit modulus.

We will now show that the first column of Q (i.e., q1) determines H and
Q with an arbitrary sign choice. Assume that real arithmetic is to be used.

Given a vector, q1, such that ‖q1‖2 = 1,

Aq1 = h11q1 + h21q2,

⇒ q∗

1Aq1 = h11.

And, h21q2 = Aq1 − h11q1,

⇒ |h21| = ‖Aq1 − h11q1‖2.

Here is where an arbitrary sign choice enters the process. Let h21 > 0, then

q2 =
1

h21
(Aq1 − h11q1).

Note that if we prescribed h21 < 0 the only change to q2 would be a sign
change. Furthermore, this process fails if h21 = 0. This failure corresponds
to the case where q1 is an eigenvector of A. In this case, we can pick any q2

that is orthogonal to q1, and we must redefine our concept of “uniqueness”.

In general,

Aqk = h1kq1 + h2kq2 + · · · + hk+1,kqk+1

⇒ q∗

i Aqk = hik for i ≤ k,

and, |hk+1,k| = ‖Aqk − h1kq1 − · · · − hkkqk‖2.

Again, we may pick the sign of this element, so let hk+1,k > 0 as before.
Similarly, the process may breakdown if (for instance) qk is in a subspace
spanned by k eigenvectors of A, which we could deal with in the same manner
as before. If this is not the case,

qk+1 =
1

hk+1,k

(Aqk − h1kq1 − ... − hkkqk),
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and the Hessenberg form is thus constructed “uniquely”.
The following theorem summarizes the nature of this uniqueness. We say

that an upper Hessenberg matrix H is unreduced if all subdiagonal elements
are nonzero.

Theorem 9.3. (Implicit Q Theorem) Suppose that QT AQ = H and

V T AV = G, where Q and V are orthogonal, and H and G are upper Hes-

senberg. Let k be the smallest integer such that hk+1,k = 0, with the con-

vention that k = n if H is unreduced. If q1 = v1, then qi = ±vi and

|hi,i−1| = |gi,i−1| for i = 2, . . . , k. Furthermore, if k < n, then gk+1,k = 0.
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Lecture 10

Practical QR Iterations

10.1 Shift Strategy

We have seen how convergence depends upon the spacing between the eigen-
values, in particular λi+1

λi
, which can often be near 1. We have also seen how

the QR Iterations are related to the Power Method, so perhaps we can use a
shift as before. Now, instead of working with A(k), we will iterate as follows:

Algorithm 10.1. Shifted QR Iteration

Let A(0) ≡ A.
while unconverged do

Choose a shift σk

Compute the QR factorization of A(k) shifted:

Q(k)R(k) = A(k) − σkI

Multiply in reverse order and undo the shift:

A(k+1) ≡ R(k)Q(k) + σkI

end while

A more practical application of this algorithm is suggested by the follow-
ing:

A(0) − σ0I = Q(0)R(0)

A(1) = R(0)Q(0) + σ0I

= Q(0)T (A(0) − σ0I)Q(0) + σ0I

Thus, if A had already been reduced to upper Hessenberg form, we could
apply shifted QR iterations by first subtracting the shift σk from the diag-
onal elements of A, then performing n − 1 rotations on the left, then the
transpose of the same rotations on the right, and then adding σ back into
the diagonal elements. This would require O

(

n2
)

operations per iteration
in the unsymmetric case, and O (n) operations in the symmetric case.
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It is easy to see that this shift strategy has not changed the eigenvalues
computed. It has hopefully served only to accelerate convergence:

A(1) = Q(0)T (A(0) − σ0I)Q(0) + σ0Q
(0)T Q(0)

= Q(0)T A(0)Q(0),

⇒ A(k+1) = Q(k)T A(k)Q(k)

= (Q(0)Q(1) · · ·Q(k))T A(Q(0) · · ·Q(k))T .

This result looks like the same result as for the unshifted QR iterations, but
now, the Q(j) are based on the shift parameter σj as well as A.

10.2 The Single Shift Strategy

How does one choose a shift σk? The simplest tactic is known as the single

shift strategy. It is based on the fact that shifting by an eigenvalue causes
deflation to occur in one step, at least in exact arithmetic. Therefore, it is
suggested that we attempt to choose an approximate eigenvalue to be the
shift.

Suppose that A has been reduced to an upper Hessenberg matrix H.
Then we can choose the (n, n) element of A(k) to be the shift. It has been
shown by Stewart that this strategy yields quadratic convergence in the
unsymmetric case, and cubic in the symmetric case.

In the symmetric case, however, Wilkinson has given heuristic reasons
why an alternative shift, known as the Wilkinson shift, is a better choice.
Let H = A(k). The Wilkinson shift is then defined to be the eigenvalue of
the 2 × 2 matrix

H̃ =

[

hn−1,n−1 hn−1,n

hn,n−1 hnn

]

that is closer to hnn.

10.3 The Double Shift Strategy

Unfortunately, in the unsymmetric case, the single shift strategy does not
work well if the eigenvalues of the block H̃ are complex, since hnn tends to
be a poor approximation to an eigenvalue.

Let H = A(k), and let a1 and a2 be the eigenvalues of H̃. If they are
complex, then we must have a1 = a2. We can proceed as follows using these
complex shifts to obtain the next iterate A(k+1):

H − a1I = U1R1 (QR factorization)

H1 = R1U1 + a1I

H1 − a2I = U2R2 (QR factorization)

A(k+1) = H2 = R2U2 + a2I

64



It is easy to see that

H2 = (U1U2)
HH(U1U2).

Suppose that we let

M = U1U2R2R1.

Then

M = U1U2R2R1

= U1(H1 − a2I)R1

= U1H1R1 − a2U1R1

= U1(R1U1 + a1I)R1 − a2U1R1

= (H − a1I)2 + a1(H − a1I) − a2(H − a1I)

= H2 − 2a1H + a2
1I + a1H − a2

1I − a2H + a1a2I

= H2 − (a1 + a2)H + a1a2I

= H2 − tr(H̃)H + det(H̃)I

and therefore M is a real matrix. It follows from the fact that M = ZR,
where Z = U1U2 and R = R2R1, is a QR factorization of M that Z can be
chosen to be real, and thus H2 = ZTHZ is also real.

Since our initial matrix H and final matrix H2 are both real, it is desirable
to compute H2 without using complex arithmetic. We could proceed by
computing M , computing the QR factorization M = ZR and applying Z

to H to compute H2, but constructing M directly can be computationally
costly (O

(

n3
)

operations since H is Hessenberg), so this is not a practical
approach.

10.4 Double Implicit Shifts

Fortunately, we can show that its explicit construction of M is not necessary
to generate H2. We can apply the Implicit Q Theorem and construct a
matrix Z1 such that ZT

1 HZ1 is upper Hessenberg, and Z1 has the same
column as the matrix Z that triangularizes M . To compute this first column
of Z, we note that Z can be written as a product of Householder matrices
Z = P1 · · ·Pn−1 where each Pi is designed to zero elements in column i of
M below the diagonal. It follows that Pie1 = e1 for i > 1, and therefore
Ze1 = P1e1.

We can compute P1 very efficiently, as it is a Householder matrix con-
structed so that P1Me1 is a mutiple of e1. Therefore, it is only necessary to
construct the first column of M , rather than the entire matrix. This column
has only three nonzero elements, so it can be computed in O(1) operations.

Once we compute P1, we can apply it directly to H. We then need
to construct the remaining Householder matrices P2, . . . , Pn−1, but we know

65



how to do so without computing the remainder of M : they transform P T
1 HP1

to upper Hessenberg form.

We shall use the following 6 × 6 example to illustrate the process.

M =

















h11 h12 h13 h14 h15 h16

h21 h22 h23 h24 h25 h26

0 h32 h33 h34 h35 h36

0 0 h43 h44 h45 h46

0 0 0 h54 h55 h56

0 0 0 0 h65 h66

































h11 h12 h13 h14 h15 h16

h21 h22 h23 h24 h25 h26

0 h32 h33 h34 h35 h36

0 0 h43 h44 h45 h46

0 0 0 h54 h55 h56

0 0 0 0 h65 h66

















− s

















h11 h12 h13 h14 h15 h16

h21 h22 h23 h24 h25 h26

0 h32 h33 h34 h35 h36

0 0 h43 h44 h45 h46

0 0 0 h54 h55 h56

0 0 0 0 h65 h66

















+ tI

=

















× × × × × ×
× × × × × ×
× × × × × ×
0 × × × × ×
0 0 × × × ×
0 0 0 × × ×

















.

And,

Me1 =

















h11h11 + h12h21

h21h11 + h22h21

h32h21

0
0
0

















− s

















h11

h21

0
0
0
0

















+ t

















1
0
0
0
0
0

















=

















h2
11 + h12h21 − sh11 + t

h21(h11 + h22 − s)
h21h32

0
0
0

















≡

















x

y

z

0
0
0

















.

We shall now define Given’s Rotations, R12 and R13 to eliminate the 2nd
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and 3rd elements of this matrix:

R13R12

















x

y

z

0
0
0

















=

















√

x2 + y2 + z2

0
0
0
0
0

















.

We shall apply similarity transformations to H using these rotations yielding

C = R13R12HRT
12R

T
13

= R13

















× × × × × ×
× × × × × ×
× × h33 h34 h35 h36

0 0 h43 h44 h45 h46

0 0 0 h54 h55 h56

0 0 0 0 h65 h66

















RT
13

=

















× × × × × ×
× × × × × ×
× × × × × ×
× 0 × h44 h45 h46

0 0 0 h54 h55 h56

0 0 0 0 h56 h66

















.

We finish one Double Implicit Shift iteration by reducing this matrix to upper
Hessenberg Form. The entire process will require O

(

8n2
)

multiplications per
iteration.

As for the rate of convergence of this method, if

A(k) =

[

F (k) G(k)

G(k)T H(k)

]

where G(k) = εK(k) and ε < 1
3 |λn−r − λn|, then

‖G(k+1)‖E ≤
10rε3

|λn−r − λn|2
.

However, this result is an asymptotic result, which is difficult to observe due
to its cubic nature. Generally, after about 2 major iterations the lower 1× 1
or 2 × 2 block decouples from the rest of the matrix, and we can proceed
with a matrix of smaller dimension.
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10.5 Banded Matrices

One can show that for symmetric matrices, the bandwidth is preserved when
using QR iterations. Let A = AT be a matrix with bandwidth 2m−1. Then

A =

























a11 . . . a1m

...
. . .

a1m
. . .

. . . an−m+1,n

. . .
...

an−m+1,n . . . ann

























.

Then, according to the QR factorization of A,

A = QR = [q1, ...,qn]R




















a11
...

a1m

0
...
0





















= r11





















q11
...

q1m

q1,m+1
...

q1n





















.

So, q1,m+1 = ... = q1n = 0. Similarly,

Ae2 = r12q1 + r22q2.

So, q2,m+2 = ... = q2n = 0. And so,

Q =























q11 . . . qn−m+1,1 . . . qn1
...

...
...

q1m

. . .
. . .

...
...

qn−m+1,n . . . qnn























.

Then,

A(1) = RQ

= QT AQ

= QT AT Q

= A(1)T .
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So, QR iteration has preserved the symmetry of A in A(1). Furthermore,

A(1)e1 = RQe1

= Rq1

=





















rT
1
...

rT
m

rT
m+1
...

rT
n









































q11
...

q1m

0
...
0





















=





















rT
1 q1
...

rT
mq1

0
...
0





















.

A(1)e2 =





















rT
1 q1
...

rT
m+1q1

0
...
0





















.

And so forth, yielding,

A(1) =

























a
(1)
11 . . . a

(1)
n−m+1,1 . . . a

(1)
n1

...
...

...

a
(1)
1m

. . .
. . .

...
...

a
(1)
n−m+1,n . . . a

(1)
nn

























.
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However, A(1) = A(1)T , so

A(1) =

























a
(1)
11 . . . a

(1)
1m

...
. . .

a
(1)
1m

. . .
. . . a

(1)
n−m+1,n

. . .
...

a
(1)
n−m+1,n . . . a

(1)
nn

























.

So, if one had a symmetric matrix with bandwidth 2m + 1, and one did not
wish to reduce this to tridiagonal form, one could perform QR Iterations
while preserving bandwidth.

10.6 Skew-symmetric Matrices

A Skew-symmetric matrix S is a real-valued matrix which satisfies ST = −S.
These matrices are normal matrices, have 0’s along the diagonal, and have
eigenvalues that are either 0 or are purely imaginary (which occur in complex
conjugate pairs).

To find the eigenvalues of these matrices, the double implicit shift strat-
egy for QR iterations can be employed. We will show in the homework
that the iterates formed in this manner will maintain the skew-symmetric
property. Thus, if these matrices have been reduced to tri-diagonal form via
unitary similarity transformations, the zero values along the diagonal should
be preserved, and only n− 1 values need to be stored and computed at each
iteration.

10.7 Constructing the Singular Value Decomposi-

tion

To construct the SVD of a matrix A, we would like to exploit the fact
that the orthogonal matrices U and V are the Schur vectors of AAT and
AT A respectively. This suggests that we could use QR Iterations on these
matrices, but explicitly forming these matrices is undesirable. Our first
step should be to reduce A to some more simple structure via orthogonal
transformations. Since the SVD involves pre- and post- multiplication by
different orthogonal matrices, this seems natural for the reduction process
as well. In doing so, we can reduce the matrix to Upper Bi-diagonal Form.

To perform this process, we shall perform one step of the standard QR
Factorization process, constructing a Householder matrix, P1, which elim-
inates all elements below the diagonal. We will then apply a Householder
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transformation, Q1 on the right so that the elements to the right of the
super-diagonal in the first row are eliminated. This transformation will only
act on the columns (2, ..., n), so the zeros along the first column will be pre-
served as shown below. I am giving what appears to be a square example,
but this does not need to be the case.

A =





a11 a12 aT
13

a21 a22 aT
23

a31 a32 A33



 .

A(0.5) ≡ P1A =







a11 a12 aT
13

0 a
(0.5)
22 a

(0.5)T
23

0 a
(0.5)
32 A

(0.5)
33






.

A(1) ≡ A(0.5)Q1 =







a11 a12 aT
13

0 a
(0.5)
22 a

(0.5)T
23

0 a
(0.5)
32 A

(0.5)
33











1 0 0T

0 q22 qT
23

0 q32 Q33



 .

=







a11 b12 0T

0 a
(1)
22 a

(1)T
23

0 a
(1)
32 A

(1)
33






.

We will then repeat this process to eliminate the non-zeros below the

diagonal in the second column of A(1) (i.e., eliminate a
(1)
32 ) and eliminate the

non-zeros to the right of the super-diagonal in the second row (i.e., convert

a
(1)T
23 to b23e

T
1 ). And so forth, reducing the matrix A to Upper Bi-diagonal

Form. Note that at the nth step of the above process, we do not need to
apply a matrix Qn on the right, but we do need to apply Pn on the left if A

is not square and Am×n with m > n. The reverse is true if m < n (i.e., we
apply only Qn). For the remainder of the discussion, I shall assume m > n.

Now, we have

A(n) = Pn · · ·P1AQ1 · · ·Qn−1 = PAQ =

[

B

0

]

.

Thus, if

B = XΣY T ,

A = PX

[

Σ
0

]

Y T Q

= U

[

Σ
0

]

V T .

Recall that Householder Transformations are symmetric, and orthogonal.
We could proceed by constructing BT B and BBT , but this has poor

numerical stability properties. Instead, we will use the matrix

B̃ =

[

0 B

BT 0

]

.
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This matrix has eigenpairs given by:

[

0 B

BT 0

] [

x

y

]

= λ

[

x

y

]

i.e., By = λx

and, BTx = λy.

So, BT By = λBTx

= λ2y

= σ2y.

And, BBTx = λBy

= λ2x

= σ2x.

So B̃ has eigenpairs given by

(λ,

[

x

y

]

) and (−λ,

[

x

−y

]

)

where x is an eigenvector of BBT and y is an eigenvector of BTB, each of
which has corresponding eigenvalue λ2 for their respective problem. Note

that we could have chosen (−λ,

[

−x

y

]

) as an alternative since this is just a

scalar multiple (-1) of the other choice.

There is one more modification to this procedure that we can make. The
matrix, B̃ is of the form

B̃ =

[

0 B

BT 0

]

=































0 α1 β1

0 α2
. . .

. . .
. . . βn−1

0 αn

α1 0
β1 α2 0

. . .
. . .

. . .

βn−1 αn 0































.

This matrix has a very large bandwidth that will get filled quickly wtih QR
Iterations. If we say these rows and columns are ordered (1, 2, ..., 2n) then
applying the column permutation (n + 1, 1, n + 2, 2, ...) and likewise to the
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rows, we obtain the matrix,

B̂ = ΠB̃ΠT =





















0 α1

α1 0 β1

β1 0 α2

. . .
. . .

. . .

βn−1
. . . αn

αn 0





















.

An alternative approach is to implicity apply QR iteration to the sym-
metric matrix BT B. At each iteration, the lower 2 × 2 block of the matrix
A(k) = B(k)∗B(k), where B(0) ≡ B, can be computed in order to obtain
the Wilkinson shift, and the Implicit Q Theorem can be applied as in the
double implicit shift strategy to uniquely determine the matrix that upper-
triangularizes A(k). In this case, the additional Householder matrices are
selected so as to restore B(k) to bidiagonal form.

73





Lecture 11

The Generalized Eigenvalue

Problem

11.1 Comments on QR Iterations

QR iterations are useful for finding all the eigenvalues of dense matrices,
particularly for real matrices, as complex eigenvalues can be found with-
out resorting to complex arithmetic. Complex matrices can also be used
with this method. For symmetric matrices, if you pre-process the matrix so
that it is reduced a tri-diagonal matrix, iterations only require O (n) floating
point operations. QR iterations will also preserve bandwidth for symmet-
ric matrices. For skew symmetric matrices the iterations will preserve the
skew tridiagonal structure that these matrices can be reduced to, finding
the purely imaginary eigenvalues with real operations. The method is also
useful for finding singular values.

The basic procedure is as follows:

1. Reduce the matrix to one of the following forms:

(a) If A = AT , reduce to tridiagonal form.

(b) If AT = −A, reduce to skew tridiagonal form.

(c) If A is not one of the above, reduce to upper Hesenberg form.

(d) If singular values are desired, reduce to bi-diagonal form.

2. Apply QR iterations with double implicit shifts. This will preserve the
reduced form of the matrix after each iteration.

3. The product of rotation matrices (Householder reflections, or Gram-
Schmidt projections) yields Q from the Murgnahan-Wintner form (or
Schur form if the eigenvalues are real-valued). A(∞) yields R from the
Murgnahan-Wintner form. The desired eigenvalues can be extracted
from the block diagonal.
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11.2 The Generalized Eigenvalue Problem

Suppose we wish to find eigenpairs (λ,x) such that

Ax = λBx. (11.1)

This problem is much more delicate than the standard eigenvalue problem
as shown in this simple 3 × 3 example.





1 0 0
0 1 0
0 0 0



xi = λi





1 0 0
0 ε 0
0 0 0



xi.

Clearly, x1 = e1 with corresponding eigenvalue λ1 = 1. This pair was simple
enough, but the problems appear in the other two pairs. The second pair
is (e2,

1
ε
). This is numerically difficult to obtain, as a small perturbation

in the matrix can yield a very large change in this eigenvalue. The third
pair is even more difficult to deal with. The third pair is (e3, λ); i.e., any
value for λ will satisfy the generalized eigenvalue equation (11.1) if e3 is
used for x. Thus there an infinte number of potential eigenvalues. This
scenario was clearly not possible in the standard case, and will be difficult
to detect with a computational scheme. The basic structure of this problem
which corresponds to the Jordan Canonical Form is called the Kronecker

Canonical Form. It is rather complicated to describe, so we shall not do so
here.

11.3 The QZ Algorithm

The basic algorithm associated with this problem was derived by Moler and
Stewart, and is called the QZ algorithm. The basic idea of the algorithm is
to use different orthogonal matrices on the left and right of A and B (i.e.,
replace A with QAZ and B with QBZ) to simultaneously reduce the matri-
ces to upper triangular form. Then, the eigenvalues are easily obtained via
the diagonal elements (i.e., λ = aii

bii
). Notice that pre- or post-multiplication

of both sides of (11.1) by a unitary matrix is analogous to performing a
similarity transformation in the standard eigenvalue problem, since if Q and
Z are orthogonal,

QAx = λQIx

⇒ QAQTy = λy,

and

AZx = λIZx

⇒ ZT AZx = λx.
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Without loss of generality, we shall assume that B is an upper triangular
matrix. If this is not the case, we shall compute the QR factorization of
B = QR, then multiply both sides of the generalized eigenvalue equation by
the matrix QT , yielding the desired forms. Thus,








a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

an1 an2 . . . ann















x1

x2
...

xn








= λ








b11 b12 . . . b1n

0 b22 . . . b2n

...
...

. . .
...

0 . . . 0 bnn















x1

x2
...

xn








.

Now, we shall apply the rotation Qn−1,n to zero out the an1 element, and
perform the same operation on B:

Qn−1,nA =








a11 a12 . . . a1n

...
. . .

. . .
...

a′n−1,1 a′n−1,2 . . . a′n−1,n

0 a′n2 . . . a′nn








,

Qn−1,nB =









b11 b12 . . . b1n

0
. . . . . . b2n

...
... b′n−1,n−1 b′n−1,n

0 . . . b′n,n−1 b′nn









.

However, this introduces a new non-zero element below the diagonal in B,
so we must apply the rotation Zn−1,n on the right of A and B to return B

to triangular form. It should be clear that this does not introduce new non-
zero elements to A, as only the n− 1st column and the nth column of A are
modified. This process of applying rotations on the left and right can proceed
until A is upper Hessenberg, for when we try to eliminate an element on the
sub-diagonal of A, it introduces a non-zero element in the same location of
B, and similarly, applying a rotation on the right to eliminate the newly
created element on B will place a new non-zero in the spot that was just
eliminated in A. So,

QAZ = H, QBZ = T

where H is upper Hessenberg, and T is upper triangular, yielding the gen-
eralized eigenvalue equation

Hy = λTy ⇒ HT−1Ty = λTy,

if we assume that T is invertible. Now, we have the simpler problem of
applying QR iterations to HT−1 with double implicit shifts.

It would be nice to think that we could do this without explicitly con-
structing T−1, and this is indeed the case. To construct the shift, we only
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need to know the bottom right 3 × 2 block of T (one element of which is
known to be 0 since T is triangular). Thus, we need 5 elements of T−1,
and these 5 elements are easily constructed. If real arithmetic is used in
the complete implementation, B will tend to a Murgnahan-Wintner type
of Block Triangular matrix (with 2 × 2 blocks that correspond to complex
eigenvalues), and A will tend to triangular as iterations proceed.

11.4 Symmetric Positive Definite Generalized Eigen-

value Problem

Suppose A = AT and B is symmetric positive definite, and we wish to solve
the generalized eigenvalue problem (11.1). Clearly, the QZ algorithm will
not preserve the symmetry of the problem, so it may be more practical to
convert it into a symmetric standard eigenvalue problem as follows: Let
B = FF T , which could be performed using Cholesky factorization. Then,

Ax = λBx

= λFF Tx

⇒ F−1Ax = λF Tx

⇒ F−1AF−T F T x = λF Tx

⇒ F−1AF−Ty = λy.

We can now compute the eigenvalues and eigenvectors of C = F−1AF−T .
The power method might be a good choice for this problem, as C would
not need to be formed explicitly, as would be necessary for QR iterations to
proceed.

11.5 Constrained Maximization of the Quadratic

Form

Often one wishes to find

max
xT x=1

xT Ax

for a symmetric matrix A. This is the same problem as finding the largest
eigenvalue of A. However, suppose you also want to impose the additional
constraint

CTx = 0.

One application where this problem arises is in statistics. Suppose we just
solved the least squares problem

min
x

‖b − CTx‖2.
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The normal equations tell us that

CTCx̂ = CTb ⇒ r = b− Cx̂, CTr = 0.

Then, we desire knowledge of the maximum value of
∑n−1

i=1 (ri+1−ri)
2. How-

ever,

n−1∑

i=1

(ri+1 − ri) =
[
1 1 . . . 1

]

1×n−1






−1 1
. . .

. . .

−1 1






n−1×n






r1
...

rn




 .

= 1T Br.

So, we are maximizing

n−1∑

i=1

(ri+1 − ri)
2 = rT BTBr ≡ rT Ar

where A = BTB = AT .
To solve this problem, we can use Lagrange multipliers. Let

φ(x, λ, µ) = xT Ax − λxTx + 2xT Cµ.

We then set ∇xφ = 0. This yields

0 = Ax− λx + Cµ

= CTAx − λCTx + CTCµ

= CTAx + CTCµ

∴ µ = (CT C)−1CTAx.

Thus, we obtain our solution by finding the largest eigenvalue of

Ax − λx + C(CTC)−1CTAx = 0

i.e., [I − C(CTC)−1CT ]Ax = λx.

Notice that P = (I − C(CTC)−1CT ) is a symmetric matrix, as is A by
assumption, but the product is in general no longer symmetric. However,

P 2 = PP

= I − 2C(CT C)−1CT + C(CT C)−1CTC(CT C)−1CT

= I − C(CTC)−1CT

= P.

Thus P is a projection matrix. Therefore, instead of looking for the largest
eigenvalue of PA, we shall look for that of P 2A. However,

λ(P 2A) = λ(P (PA)) = λ((PA)P ) = λ(PAP ),
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and PAP is a symmetric matrix. Furthermore, since C is an n × k matrix,

λn−k+1 = ... = λn = 0.

Now, we can substitute the QR factorization of C into P :

C = Q

[
R

0

]

.

P = In − Q

[
R

0

]

(RT R)−1
[
RT , 0

]
QT

= In − Q

[
Ik 0
0 0

]

QT

= Q

[
0 0
0 In−k

]

QT .

∴ PAP = Q

[
0 0
0 In−k

]

QT AQ

[
0 0
0 In−k

]

QT .

Since we are interested in computing the largest eigenvalue of PAP , we can
ignore the outer Q and QT as this is a similarity transformation, and look
at the largest eigenvalue of

[
0 0
0 In−k

]

QT AQ

[
0 0
0 In−k

]

.

Let us now define

Â = QT AQ =

[
Â11 Â12

Â21 Â22

]

.

Then,
[
0 0
0 In−k

]

QT AQ

[
0 0
0 In−k

]

=

[
0 0

0 Â22

]

.

Therefore, λ(PAP ) = λ(Â22) ∪ {0}.
So, we have two algorithms for solving our problem. First, we can con-

struct P , and then find the eigenvalues of PAP . Alternatively, we can
compute the QR factorization of C, construct Â22, and find the eigenvalues
of Â22.

Which algorithm should be used? Â22 has none of the data structure
that previously existed, but we now have a smaller problem to deal with.
Therefore, if we want to preserve the data structure, we should use the first
algorithm. This is particularly true if only a few constraints are needed, for
then we can use the power method to exploit the data structure.
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Lecture 12

Constrained Least Squares

and Introduction to Lanczos

Method

12.1 Constrained Least Squares Problem

12.1.1 Lagrange Multipliers

Suppose we were given Am×n, b, and a scalar α, and wished to find the
vector x such that ‖b − Ax‖2 is minimized, while maintaining ‖x‖2 = α.
We could solve this problem by using Lagrange multipliers, constructing the
potential function

φ(x, λ) = ‖b −Ax‖2
2 + λ(‖x‖2

2 − α)

= (bT − xTAT )(b −Ax) + λ(xT x− α2).

Setting the gradient of this function with respect to x (and not λ) equal to
zero yields the equation

∇xφ = −2AT b + 2ATAx + 2λx = 0

which has the solution

x = (ATA+ λI)−1AT b.

provided the inverse of ATA + λI exists. Substituting this result into the
constraint ‖x‖2

2 = α2 yields

ψ(λ) = bTA(ATA+ λI)−2ATb− α2 = 0.
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Let A = UΣV T be the singular value decomposition of A. Then our con-
straint equation becomes

ψ(λ) = 0 = bTUΣV T (V ΣTUTUΣV T + λI)−2V ΣTUTb − α2

= bTUΣV T (V (ΣT Σ + λI)V T )−2V ΣTUTb− α2

= bTUΣV T (V (ΣT Σ + λI)V TV (ΣT Σ + λI)V T )−1V ΣTUTb− α2

= bTUΣ(ΣT Σ + λI)−2ΣTUTb − α2.

Letting β = UTb, we arrive at

ψ(λ) =

n
∑

i=1

β2
i σ

2
i

(σ2
i + λ)2

− α2 = 0.

Thus, ψ(λ) has a pole whenever λ = −σ2
i . Furthermore, ψ(λ) decreases from

∞ to −α2 as λ goes from −σ2
n to ∞. Hence, after computing the SVD of

A, we could use a non-linear equation solver, such as Newton’s method, to
find λ̂ such that the constraint equation is satisfied. Then, we can obtain
the solution vector, x. The algorithm is summarized as:

Algorithm 12.1. (Constrained Least Squares Solution)

Given A, b, and α2,
Compute the SVD of A. (Lots of work)
Compute β = UTb. (Trivial)

Solve ψ(λ) = 0 for λ̂. (Some work)

Solve for x either (ATA+ λ̂)x = ATb or V (ΣT Σ + λ̂I)V Tx = V T Σβ. (Some work)

12.1.2 Quadratic Eigenvalue Problem

An alternative method for solving the Constrained Least Squares Problem
is to construct the (n+ 1) × (n+ 1) system of equations:

[

(ATA+ λI)2 ATb

bTA α2

] [

u

ξ

]

= 0.

That is,

(ATA− λI)2u +ATbξ = 0, (12.1)

bTAu + α2ξ = 0. (12.2)

Equation (12.1) says

u = −(ATA+ λI)−2AT bξ

which can be substituted into (12.2) yielding

(−bTA(ATA+ λI)−2ATb + α2)ξ = 0.
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Setting ξ = 1 to obtain non-trivial solutions yields the same equation gener-
ated from the Lagrange multipliers approach. If, however, we solved (12.2)
for ξ to obtain

ξ = −
1

α2
bTAu

and substituted this expression into (12.1), we obtain

[(ATA+ λI)2 −
1

α2
ATbbTA]u = 0.

Hence, if we can solve this quadratic eigenvalue problem, perhaps using the
method discussed earlier in the quarter, we can avoid computing the SVD
of A.

12.2 Introduction to Lanczos Method

The Lanczos Method is primarily used for computing the eigenvalues of A
where A is symmetric (which we shall assume throughout this discussion),
although it can be extended for non-symmetric matrices. The basis of the
method is in computing the coefficients of the characteristic polynomial:

φ(λ) = ξ0 + ξ1λ+ ...+ ξn−1λ
n−1 − λn.

Recall that if λ is an eigenvalue, φ(λ) = 0. Furthermore, the Cayley-
Hamilton Theorem tells us that A satisfies its own characteristic equation;
i.e.

φ(A) = ξ0I + ξ1A+ ...+ ξn−1A
n−1 −An = 0.

Thus, if we let q be an arbitrary vector such that ‖q‖2 = 1, we have

φ(A)q = ξ0q + ξ1Aq + ...+ ξn−1A
n−1q −Anq = 0.

This suggests that we can compute the coefficients of the characteristic poly-
nomial by solving the system of equations

[

q, Aq, . . . , An−1q
]

ξ = Anq

where ξ =
[

ξ0 ξ1 ... ξn−1

]T
. If we define the Krylov Sequence {qi}

according to q0 = q, qi+1 = Aqi for i = 0, ..., n− 1, this can be expressed as

[

q0 q1 · · · qn−1

]

ξ = qn,

or simply Qξ = qn.
Unfortunately, this method breaks down very easily. For example, if q0

is an eigenvector of A, then rank(Q) = 1. Similarly, if q0 is in a subspace
spanned by only r eigenvectors of A, then rank(Q) = r. Furthermore, even
if q0 has non-zero components in the direction of each eigenvector of A,
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Q will be highly ill-conditioned for large n, because qk is the result of k
iterations of the power method without rescaling the iterates. Hence the
last columns of Q look very much like the eigenvector that corresponds to
the largest eigenvalue of A. This problem becomes even more dramatic if the
eigenvalues are spaced far apart in modulus, which is a property we would
ordinarily like for solving an eigenvalue problem.

Instead of looking at Qξ = qn, we will look at the normal equations
QTQξ = QTqn (which is even more horribly ill-conditioned). The (r+1, s+
1) element of QTQ is given by

(QTQ)r+1,s+1 = qT
r qs = qT

0A
rTAsq0 = qT

0A
r+sq0 ≡ µr+s.

Thus,

QTQ =

















µ0 µ1 µ2 . . . µn−1

µ1 µ2 µ3 . . . µn

µ2 µ3 µ4
...

...
...

. . . µ2n−3

µn−1 µn . . . µ2n−3 µ2n−2

















.

Notice that each counter diagonal has the same value. Any such matrix is
called a Hankel Matrix. Systems of equations involving Hankel matrices can
be solved using O

(

n2
)

operations. In our case, QTQ is symmetric positive
semi-definite.

If Azi = λzi for i = 1, 2, ..., n, then q =
∑n

i=1 αizi. Hence,

µr = qArq =

n
∑

i=1

λr
iα

2
i =

∫

λrdα(λ).

Thus, µr is a Stieltjes integral, where the distribution function α(λ) is a step
function which takes the value α2

i for λ between λi and λi+1. We mention
this only for reference purposes, not as a computational scheme.

If A 6= AT , then

qT
r+1qs+1 = qT

0 (Ar)TAsq0

does not lead to a Hankel Matrix. Instead, we must define two sequences,

qr = Arq0 for r = 0, 1, ..., n − 1

ps = (AT )sp0 for s = 0, 1, ..., n − 1.

Now,

(P TQ)r+1,s+1 = pT
0 [(AT )r]TAsq0 = p0A

r+sq0 ≡ µr+s.

This matrix is a Hankel Matrix. Furthermore, it is symmetric, but it is
not likely to be positive semi-definite. We can then express q0 as a linear
combination of the right eigenvectors of A, q0 =

∑n
i=1 αizi where Azi = λizi,
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and p0 as a linear combination of the left eigenvectors of A, p0 =
∑n

j=1 βjvj

where ATvi = λivi. Then, since vT
j zi = 0 for i 6= j, and vT

i zi = si,

µr+s =
n

∑

i=1

αiβisiλ
r+s
i =

∫

λr+sdγ(λ)

only if αiβi > 0 so that the measure γ(α) is positive and increasing. Some-
times, one ignores this detail and performs formal manipulations anyway.

Returning to the symmetric case, we have an efficient method for solving
the normal equations, but, as mentioned before, the system is horribly ill-
conditioned. To alleviate our troubles, we will try to find a different basis
for our polynomial vector space, and hence a different representation for the
characteristic polynomial:

φ(λ) = ξ0 + ξ1λ+ ...+ ξn−1λ
n−1 − λn

= η0p0(λ) + η1p1(λ) + ...+ ηn−1pn−1(λ) + ηnpn(λ).

One possibility would be to choose the Chebyshev polynomials. These
polynomials form an orthogonal family with respect to the weight function

1
√

x2
−1

, not the measure α(λ). If we choose to proceed in this fashion, we

would need to manipulate νr =
∫

pr(λ)dα(λ) instead of µr =
∫

λrdα(λ).
The Lanczos method will generate a set of polynomials {pi(λ)}n

i=0 that are
orthogonal with respect to α(λ). That is,

∫

pr(λ)ps(λ)dα(λ) = 0 for r 6= s.

Note that all orthogonal polynomials satisfy a 3-term recurrence relationship

pr+1(λ) = (λ− αr+1)pr(λ) − β2
rpr−1(λ),

p−1(λ) = 0, p0(λ) = 1.

Thus,

pr+1(A) = (A− αr+1I)pr(A) − β2
rpr−1(A)

⇒ pr+1(A)q0 = (A− αr+1I)pr(A)q0 − β2
rpr−1(A)q0,

(i.e., we have generated a sequence of orthogonal vectors). Let xr = pr(A)q0.
Then,

xr+1 = (A− αr+1I)xr − β2
rxr−1.

We will show how to choose the recursion coefficients αi and βi such that
xT

r xs = 0 for r 6= s.
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Lecture 13

Lanczos and Orthogonal

Polynomials

13.1 Chebyshev Polynomials

Given a matrix A, we devised an algorithm for finding the coefficients of its
characteristic polynomial φ(λ). Recall

φ(λ) = ξ0 + ξ1λ + ... + ξn−1λ
n−1 − λn.

Unfortunately, this method involved solving a horribly ill-conditioned system
of linear equations. To solve this problem, we proposed finding a new basis
for the space of polynomials of degree n, and finding the coefficients of φ

with respect to this new basis. Hence, we wish to define {pj(λ)}n
i=0 and

compute {ηj}n−1

j=0
such that

φ(λ) = η0p0(λ) + η1p1(λ) + · · · + ηn−1pn−1(λ) − ηnpn(λ).

We would like pj(λ) to be a monic polynomial of degree j, and {pj(λ)} to
be an orthogonal family. With our choice of monic polynomials, we can
conclude ηn = −1 (as with the standard polynomial basis). We mentioned
two possibilities; the first was to pre-select a family of such polynomials, the
second was to construct one on the fly.

Suppose A is symmetric positive definite. Let us define Ã = I − αA,
with α = 2

λ1+λn
, so that each eigenvalue λ of Ã satisfies −1 ≤ λ ≤ 1. We

can then choose the Chebyshev polynomials

pj(λ) = cos(j cos−1 λ) for |λ| ≤ 1,

= cosh(j cosh−1 λ) otherwise.

Each polynomial in this family undergoes equi-oscillation between ±1 on the
interval |λ| ≤ 1. Also, as a family, they are the smallest orthogonal polynomi-
als on the interval |λ| ≤ 1, and they grow the fastest outside of this interval.
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Furthermore, the 3-term recurrence relationship for these polynomials is

pj+1(λ) = 2λpj(λ) − pj−1(λ). (13.1)

If we define p−1 = 0 and choose p0 arbitrarily, we can post-multiply the
above expression (13.1) by p0 and hence define a sequence of vectors, ac-
cording to

pj+1 = 2Ãpj − pj−1,

or, equivalently, pj = pj(Ã)p0. We can then find the coefficients of the
characteristic polynomial for Ã by solving the system Pη = pn, where P =
[

p0 · · · pn−1

]

and η =
[

η0 · · · ηn−1

]

. If we solve this system via the
normal equations P T Pη = P Tpn, and write

p0 =
n

∑

i=1

αiui

where each ui is an eigenvector of Ã satisfying

Ãui = λiui, ‖ui‖2 = 1, i = 1, . . . , n,

then

(P T P )r+1,s+1 = (pr(Ã)p0, ps(Ã)p0)

= pT
0 pr(Ã)ps(Ã)p0

=
n

∑

i=1

α2
i pr(λi)ps(λi)

=

∫

pr(λ)ps(λ) dπ̂(λ).

But,

pr(λ)ps(λ) = cos(rθ) cos(sθ)

=
1

2
(cos((r + s)θ) + cos(|r − s|θ))

where θ = cos−1 λ. Therefore, if we define

αj =

∫

pj(λ) dπ̂(λ),

then
∫

pr(λ)ps(λ) dπ̂(λ) =
1

2

∫

(pr+s(λ) + p|r−s|(λ)) dπ̂(λ)

=
1

2
(αr+s + α|r−s|)

= (P T P )r+1,s+1.
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Note that we will compute the inner products, and exploit this “α” repre-
sentation:

P T P =
1

2

















α0 α1 α2 . . . αn−1

α1 α2 α3 . . . αn

α2 α3 α4

...
...

...
. . . α2n−3

αn−1 αn . . . α2n−3 α2n−2

















+
1

2



















α0 α1 α2 . . . αn−1

α1 α0 α1

. . .
...

α2 α1

. . .
. . . α2

...
. . .

. . . α0 α1

αn−1 . . . α2 α1 α0



















.

=
1

2
< Hankel > +

1

2
< Toeplitz > .

Recall that any matrix that is constant along its diagonals is called a Toeplitz

Matrix. Just as there are fast (i.e., O
(

n2
)

) solvers for Hankel Matrices, there
are Fast Toeplitz solvers, and a recent development due to Heinig has yielded
algorithms to solve Hankel+Toeplitz matrices in O

(

n2
)

operations, without
explicitly separating the two parts.

This yields a more stable computation of φ(λ). To compute the eigen-
values, we still need to find the roots of φ(λ). If we were to use Newton’s
method, we would need derivatives, so we would differentiate the recurrence
relation as discussed in an earlier lecture.

13.2 Determining The Orthogonal Polynomials “On

The Fly”

Since Chebyshev polynomials are not orthogonal with respect to π̂(λ), how
would we construct a family of orthogonal polynomials “on the fly”? All or-
thogonal polynomials on the real line satisfy a 3 term recurrence relationship
of the form:

pj+1(λ) = (λ − αj+1)pj(λ) − β2
j pj−1(λ) (13.2)

where p−1(λ) = 0 and p0(λ) = 1. Furthermore, given any set of coefficients
{αj , βj}, there exists a measure on which {pj(λ)} forms an orthogonal family.
And, for any measure, there exists a set of parameters {αj , βj} such that an
orthogonal family can be constructed using (13.2).

Then, by plugging A into (13.2), and post-multiplying by a non-zero
vector p0 with ‖p0‖2 = 1 as follows:

pj+1(A)p0 = (A − αj+1I)pj(A)p0 − β2
j pj−1(A)p0,

we can generate a sequence of vectors xj = pj(A)x0 with x0 = p0 and
x−1 = 0. Now, we can choose αj and βj such that this sequence of vectors
are orthogonal for j = 0, ..., n − 1.

We wish to constuct x1 so that it is orthogonal to x0. We have

x1 = (A − α1I)x0
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and by taking the inner product of both sides with x0, we obtain

⇒ 0 = xT
0 x1 = xT

0 (A − α1I)x0

⇒ α1 =
xT

0 Ax0

xT
0
x0

.

We now have 2 vectors, and we can proceed by induction. Suppose we have
j + 1 mutually orthogonal vectors {x0, ...,xj}. Then,

xj+1 = (A − αj+1I)xj − β2
j xj−1.

xT
j xj+1 = xT

j (A − αj+1I)xj − β2
j x

T
j xj−1

= xT
j (A − αj+1I)xj .

xT
j xj+1 = 0

⇒ αj+1 =
xT

j Axj

xT
j xj

.

Similarly,

xT
j−1xj+1 = xT

j−1(A − αj+1I)xj − β2
j x

T
j−1xj−1

= xT
j−1Axj − β2

j x
T
j−1xj−1.

xT
j−1xj+1 = 0

⇒ β2
j =

xT
j−1Axj

xT
j−1

xj−1

.

How do we know βj > 0? Since A is symmetric,

β2
j =

xT
j−1Axj

xT
j−1

xj−1

=
xT

j Axj−1

xT
j−1

xj−1

.

But,

xj = (A − αjI)xj−1 − β2xj−2.

∴ xT
j xj = xT

j Axj−1.

So,

β2
j =

xT
j xj

xT
j−1

xj−1

.

Now, we have constructed xj+1 so that it is orthogonal to xj and xj−1.
Is xT

k xj+1 = 0 for k < j − 1? We have

xT
k xj+1 = xT

k Axj − αj+1x
T
k xj − β2

j x
T
k xj−1

= xT
k Axj

= xT
j Axk.
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But,

xk+1 = (A − αk+1I)xk − β2
kxk−1

⇒ xT
j xk+1 = xT

j Axk − αk+1x
T
j xk − β2

kx
T
j xk−1

i.e., xT
j Axk = 0.

So, xT
k xj+1 = 0 for k = 0, 1, 2, ..., j.

Algorithm 13.1. Generation of Orthogonal Vectors and Polynomi-

als

Given x0.

α1 =
x

T
0 Ax0

x
T
0 x0

.

x1 = (A − α1)Ix0.
for k = 1, . . . , n,

αk+1 =
x

T
k

Axk

x
T
k
xk

.

β2
k =

x
T
k
xk

x
T
k−1xk−1

.

xk+1 = (A − αk+1I)xk − β2
kxk−1.

end

An alternative perspective on this computation is,

A
[

x0, . . . , xn−1

]

=
[

x0, . . . , xn−1

]



















α1 β2
1 0 . . . 0

1 α2 β2
2

. . .
...

0
. . .

. . .
. . . 0

...
. . . 1 αn−1 β2

n−1

0 . . . 0 1 αn



















(i.e., AX = XJ or A = XJX−1 where J is a tridiagonal matrix). Thus,
finding the eigenvalues of A is the same as finding the eigenvalues of J .
Furthermore, there exists a matrix, D = diag(1, d1, d2, ..., dn−1) where di = 1
if β2

i = 0, di = 1√
β2

i

otherwise. Then, K = D−1JD where

K =



















α1 β1 0 . . . 0

β1 α2 β2

. . .
...

0
. . .

. . .
. . . 0

...
. . . βn−2 αn−1 βn−1

0 . . . 0 βn−1 αn



















.

Thus, A = QKQ−1. Furthermore, we can show that Q−1 = QT .
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This algorithm requires storage of only 2 vectors at a time. It is optimal
for large sparse matrices as only a matrix-vector multiplier is required. It
yields the coefficients needed to define an orthogonal family of polynomials
or it defines a tridiagonal matrix, that is similar to A. Hence, it is useful as a
preliminary computation for QR iteration, or for yielding the characteristic
polynomial to be used with Newton iterations, or some other root finding
algorithm.

If we want eigenvectors, we need to store all of the vectors xj , as well
as needing to find the eigenvectors of the tridiagonal matrix, K. Often,
one performs this algorithm, and then uses a method to regenerate the xj

which were not stored. Secondly, this algorithm will break down if x0 is an
eigenvector, since under these circumstances, α1 is an eigenvalue, and then
x1 = 0. This is not entirely bad, though, because now we can deflate our ma-
trix and restart. Similarly, if x0 is in a subspace spanned by p eigenvectors,
xp = 0 and we can again deflate.
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Lecture 14

Lanczos Algorithm and Error

Estimates

14.1 Steepest Descent

Let A be an n × n symmetric positive definite matrix, with eigenvalues

λ1 ≥ · · · ≥ λn > 0,

and corresponding eigenfunctions zi, i = 1, . . . , n. We have seen that the
Rayleigh quotient

r(x) =
xT Ax

xTx

achieves its maximum value at λ1, and its minimum at λn.

This suggests a simple algorithm for finding these extremal eigenvalues.
We choose an arbitrary starting vector q1, with ‖q1‖2 = 1, and then follow
the direction of steepest ascent to obtain an improved approximation to λ1,
while following the direction of steepest descent to improve our approxima-
tion of λn. We can continue this process until our approximations converge
to the desired eigenvalues.

From multivariable calculus, we know that the direction of steepest de-
scent of r(x) from x is ∇r(x), and the direction of steepest descent is
−∇r(x). Therefore, we can refine our algorithm as follows:

Choose arbitary q1 so that ‖q1‖2 = 1
for k = 1, 2, . . .

Qk =
[

q1 · · · qk

]

Let Tk = QT
k AQk

Let Tk = SkMkS
T
k be the Schur decomposition of Tk

with diag(Mk) = (θ1, . . . , θk), θ1 ≥ · · · ≥ θk

uk = QkSke1
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vk = QkSkek

Choose qk+1 orthogonal to {q1, . . . ,qk} so that
span(q1, . . . ,qk+1) = span(q1, . . . ,qk,∇r(uk)) and
span(q1, . . . ,qk+1) = span(q1, . . . ,qk,∇r(vk))

end

Since each approximation Mk to λ1 and mk to λn is obtained by taking the
maximum and minimum values of r(x) over a larger subspace, clearly these
approximations converge to λ1 and λn, respectively, while the vectors uk

and vk converge to the corresponding eigenvectors.

It may seem impossible to expand the subspace spanned by the columns
of Qk as prescribed in the above algorithm, but it is actually quite simple
to do so, since

∇r(x) =
2

xTx
(Ax − r(x)x).

Therefore ∇r(x) ∈ span(x, Ax). It follows that for each k, the columns of
Qk span the Krylov subspace

K(A,q1, k) = span(q1, Aq1, . . . , A
k−1q1).

Let

K(A,q1, k) =
[

q1 Aq1, . . . , A
k−1q1

]

.

Then Qk can be constructed by orthogonalizing the columns of K(A,q1, k).
This could be accomplished by computing the QR factorization, but this is
not practical because the columns of K(A,q1, k) need to be computed up
front, and these columns tend to become linearly dependent as k increases,
as we saw when we discussed the power method. The Lanczos algorithm is
an alternative approach that computes the columns of Qk on the fly.

Let

K(A,q1, k) = QkRk

be the QR factorization of K(A,q1, k). Then,

QT
k AK(A,q1, k) = Hk

is an upper Hessenberg matrix. It follows from

QT
nAQnQT

nK(A,q1, k) = (QT
n AQn)Rk = Hk

that Tn = QT
nAQn is Hessenberg, and, due to its symmetry, is in fact tridi-

gagonal. We will see that the Lanczos algorithm computes the entries of Tn

and the columns of Qn simultaneously.
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14.2 The Lanczos Algorithm

Let A be a symmetric matrix. Then A can be reduced to a symmetric tri-
diagonal matrix via orthogonal similarity transformations as we have shown
in previous lectures. Hence A = QnTnQT

n , and

Tn =



















α1 β1 0 . . . 0

β1 α2 β2

. . .
...

0
. . .

. . .
. . . 0

...
. . . βn−2 αn−1 βn−1

0 . . . 0 βn−1 αn



















.

Then, AQ = QT implies

Aqj = βj−1qj−1 + αjqj + βjqj+1.

∴ βjqj+1 = Aqj − βj−1qj−1 − αjqj,

⇒ |βj | = ‖Aqj − βj−1qj−1 − αjqj‖2,

and, qj = Aqj − βj−1qj−1 − αjqj.

Which suggests the following algorithm:

Algorithm 14.1. (Lanczos Algorithm)

Initially, r0 = q1 such that ‖q1‖2 = 1, β0 = 1, q0 = 0, and k = 0.
while βk 6= 0

qk+1 = rk/βk.
k = k + 1.
αk = qT

k Aqk.
rk = (A − αkI)qk − βk−1qk−1.
βk = ‖rk‖2.

end

Notice that if A is positive definite, each αk > 0. Also, if λ1 = ... = λp,
then there exists βi1 = ... = βip−1 = 0, and the basic algorithm breaks down.
However, this only means that we can deflate our matrix, and restart with
a smaller one.

14.3 A Posteriori Error Estimate

Suppose we have performed k steps of the Lanczos Algorithm. Then, let
Qk =

[

q1, . . . qk

]

, QT
k Qk = I and

AQk = QkTk + rke
T
k

95



where Tk is the leading k × k block of T . Let Tk = SkMkS
T
k be the spectral

decomposition of Tk. The diagonal elements µ1, . . . , µk of Mk are known as
the Ritz values. Then, the columns of Yk = QkSk =

[

y1, . . . , yk

]

, known
as Ritz vectors, should approximate k eigenvectors of A. Since ‖yj‖2 = 1,
our analysis earlier in the quarter showed that the interval

|λ − µj | ≤ γj ≡ ‖Ayj − µjyj‖2

contains an eigenvalue of A. Furthermore, one can show that this is an
exclusive interval as well (i.e., there exists at least one eigenvalue outside of
the interval also).

Also,

AQk = QkTk + rke
T
k .

⇒ AQkSk = QkTkSk + rke
T
k Sk

= QkSkMk + rke
T
k Sk,

AYk = YkMk + rke
T
k Sk.

⇒ Ayj = µjyj + (eT
k Sej)rk.

∴ γj = ‖Ayj − µjyj‖2

= ‖rk‖2|skj|
= |βk||skj|

since qk+1 = rk/βk and ‖qk‖2 = 1. Notice also that skj is the jth element
in the bottom row of Sk (i.e., the last element in the jth eigenvector). Thus,

|λ − µj| ≤ |βk||skj|.

Thus, if k eigenvalues are desired, we can quickly check the last element of
the eigenvectors to avoid performing too many iterations.

Suppose we want the smallest eigenvalue, and µ1 ≤ µ2 ≤ ... ≤ µk, after
k steps. If we aren’t satisfied with our error bounds, we can restart with
q1 = y1. To see this, let η = Qkξ. Then,

min
η 6=0

ηT Aη

ηT η
= min

ξ 6=0

ξT QT
k AQkξ

ξT ξ
= µ1

because QT
k AQk = Tk. Hence using this as the restart vector is akin to

applying Lanczos in a steepest descent mode. Along a similar line, Hestenes
and Karusch, and earlier still by Kantarovich, analyzed the following scheme:

Algorithm 14.2. Steepest Descent for the Eigenvalue Problem

Given an initial vector x1 with ‖x1‖2 = 1.
while unconverged
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θk = xT
k Axk.

zk = Axk − θkxk.

yk+1 = axk + bxk where

[

a

b

]

is the eigenvector of

([

xT
k

zT
k

]

A
[

xk, zk

]

)

that corresponds to its smallest eigenvalue.
xk=1 = yk+1/‖yk+1‖2.

end

14.4 Kaniel-Paige Convergence Theory

In the previous section, we obtained error estimates for the Ritz values of
Tk, but we still know nothing about the rate of convergence. The following
theorem, from Kaniel-Paige theory, sheds light on this aspect of the Lanczos
algorithm.

Theorem 14.1 Let A be an n×n symmetric matrix with eigenvalues λ1 ≥
· · · ≥ λn and corresponding orthonormal eigenvectors z1, . . . , zn. If θ1 ≥
· · · ≥ θk are the eigenvalues of the matrix Tk obtained after k steps of the
Lanczos iteration, then

λ1 ≥ θ1 ≥ λ1 − (λ1 − λn)
tan(φ1)

2

(ck−1(1 + 2ρ1))2

where cos(φ1) = |qT
1 z1|, ρ1 = (λ1−λ2)/(λ2 −λn), and ck−1(x) is the Cheby-

shev polynomial of degree k − 1.

Proof Since θ1 is the largest eigenvalue of Tk, and each Lanczos vector qk is
of the form qk = pk−1(A)q1, where pk is a polynomial of degree k, it follows
that

θ1 = max
y 6=0

yT Tky

yT y

= max
y 6=0

yT QT
k AQky

yT QT
k Qky

= max
p∈Pk−1

qT
1 p(A)Ap(A)q1

qT
1
p(A)2q1

where Pk−1 is the space of all polynomials of degree at most k − 1. Clearly,
θ1 = r(Qky) for some y, so θ1 ≤ λ1. To establish the lower bound on θ1, we
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write q1 =
∑n

i=1
dizi, and obtain

qT
1 p(A)Ap(A)q1

qT
1
p(A)2q1

=

∑n
i=1

d2
i p(λi)

2λi
∑n

i=1
d2

i p(λi)2

=

∑n
i=1

d2
i p(λi)

2(λi + λ1 − λ1)
∑n

i=1
d2

i p(λi)2

= λ1 −
∑n

i=2
d2

i p(λi)
2(λ1 − λi)

∑n
i=1

d2
i p(λi)2

≥ λ1 − (λ1 − λn)

∑n
i=2

d2
i p(λi)

2

d2
1
p(λ1)2 +

∑n
i=2

d2
i p(λi)2

We can obtain a sharp bound by choosing

p(x) = ck−1

(

1 + 2
x − λn

λ2 − λn

)

.

The argument to ck−1(x) is constructed to map the interval [λn, λ2] to [−1, 1].
Since |ck−1(x)| ≤ 1 on [−1, 1] and grows vary rapidly outside this interval, it
follows that p(x) is large at λ1 and small at the other eigenvalues. Therefore,
using the fact that d1 = qT

1 z1, we obtain

θ1 = max
p∈Pk−1

qT
1 p(A)Ap(A)q1

qT
1
p(A)2q1

≥ λ1 − (λ1 − λn)

∑n
i=2

d2
i

d2
1
ck−1(1 + 2ρ1)2

≥ λ1 − (λ1 − λn)
1 − d2

1

d2
1

1

ck−1(1 + 2ρ1)2

≥ λ1 − (λ1 − λn)
tan(φ1)

2

ck−1(1 + 2ρ1)2

�

Similar bounds can be established for θk, regarding its rate of convergence
to λn.

14.5 Block Lanczos

Often one wishes to use several vectors at a time with the Lanczos procedure.
The previous algorithm can be easily modified to accomodate this. Suppose
we started with p initial orthonormal vectors as the columns of Q1. We will
construct the decomposition A = QJQT , where Q =

[

Q1, . . . , Qr

]

and
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Q is orthogonal, and J is block tridiagonal, namely

J =



















A1 B1 0 . . . 0

BT
1 A2 B2

. . .
...

0
. . .

. . .
. . . 0

...
. . . BT

r−2 Ar−1 Br−1

0 . . . 0 BT
r−1 Ar



















.

Note that n = p · r and each sub-block within J is p × p.

A = QJQT

AQ = QJ

AQ1 = Q1A1 + Q2B
T
1

⇒ QT
1 AQ1 = A1Q

T
1 Q2B

T
1

= A1

assuming the columns of Q2 are orthonormal, and orthogonal to those of Q1.
Then,

Q2B
T
1 = AQ1 − Q1A1 ≡ Z1.

∴ QT
1 Z1 = QT

1 AQ1 − A = 0.

So, the columns of Z1 are orthogonal to those of Q1. Furthermore,

ZT
1 Z1 = B1Q

T
2 Q2B

T
1

= B1B
T
1 .

So, one possible way to construct B1 would be via a Cholesky Factorization
of ZT

1 Z1, hence Q2 = Z1B
−T
1

, but this is a bad choice. Instead, we will
compute the QR factorization of Z1, and let the transpose of the R factor
be B1, hence B1 is lower triangular, and Z1 = Q2B

T
1 .

We now have constructed A1, a lower triangular B1, and Q1 (which was
given) and Q2, reducing A to the form















A1 B1 0 . . . 0
BT

1 × × . . . ×
0 × × . . . ×
...

...
...

. . .
...

0 × × . . . ×















.

We shall now proceed inductively. After j − 1 steps we have constructed
A1, ..., Aj−1, lower triangular matrices B1, ..., Bj−1, and matrices with mu-
tually orthonormal columns, Q1, ..., Qj . Then,

AQj = Qj−1Bj−1 + QjAj + Qj+1B
T
j .
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So,

QT
j Qj+1B

T
j = QT

j AQj − QT
j QjAj − QT

j Qj−1Bj−1

= QT
j AQj − Aj .

Zj ≡ AQj − QjAj − Qj−1Bj−1

= Qj+1B
T
j .

Then, we construct Qj+1 and Bj from the QR factorization of Zj , and define
Bj to be the transpose of the R factor, as before. It can be shown that all
orthogonalities for Qj+1 are maintained as necesary, and so Aj = QT

j AQj .
We have not only constructed a block tridiagonal matrix, but it has upper

triangular blocks along the sub-diagonal, and lower triangular blocks along
the super-diagonal. Thus, the resulting J matrix is banded, with bandwidth
2p + 1.

14.6 More Error Bounds

We can generalize the Kaniel-Paige theory to determine error bounds based
on the block Lanczos procedure. After t steps, we have

Jt =



















A1 B1 0 . . . 0

BT
1 A2 B2

. . .
...

0
. . .

. . .
. . . 0

...
. . . BT

t−2 At−1 Bt−1

0 . . . 0 BT
t−1 At



















.

Suppose A has eigenvalues λ1 ≥ · · · ≥ λn with a complete set of correspond-
ing eigenvectors z1, ..., zn, and λp > λp+1 (recall, p initial vectors are used
to define Q1). Furthermore, suppose Jt has eigenvalues µ1, ..., µtp. Then

A = ZΛZT , and W = ZT Q1 =

[

W1

W2

]

where W1 is a p × p block. If W1 is

nonsingular, then σmin(W1) > 0 and

λk ≥ µk ≥ λk − ε2
k

where

ε2
k =

(λ1 − λk) tan2 θk

T 2
t−1

(1+νk

1−νk
)

.

and θk = cos−1(σmin(W1)), νk =
λk−λp+1

λk−λ1
, and Ts(ν) is the sth Chebyshev

polynomial of the first kind. As mentioned in the previous lecture, these
polynomials are the smallest polynomials inside the interval [−1, 1], and
increase the fastest outside the interval. Thus, the denominator has a term
which is potentially quite large.
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For example, if A is a 1000×1000 matrix, and we choose 2 initial vectors
to define Q1 (i.e., p = 2), and these vectors yield σmin(W1) = 0.4, and if the
eigenvalues of A are ordered with λ1 = 0, λ2 = 0.1, λ3 = 0.5, and λ1000 = 1,
then after 10 steps of Block Lanczos (i.e., t = 10),

λ1 ≤ µ1 ≤ λ1 + 2.6 × 10−8,

λ2 ≤ µ2 ≤ λ2 + 3.6 × 10−7.

It should be noted however that the spacing between the second and third
eigenvalues is rather large. Typically, if A is the result of a discretized
differential operator, eigenvalues will be be clustered together, so such a
large separation between the second and third eigenvalues is unlikely. If a
sequence of problems are to be solved, and the eigenvalues do not change
very much from one problem to the next, this set of bounds could prove
useful in obtaining estimates for the number of Lanczos iterations required,
and good block sizes to use. Typically, a small p is chosen, such as 2 or 3.
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Lecture 15

Lanczos Technical Details

and Interlaced Eigenvalues

15.1 Why Study Lanczos?

The Lanczos algorithm applied to a symmetric matrix generates a sequence
of orthonormal vectors {q1, ...,qk} after k steps. These vectors serve to
tridiagonalize A in such a manner that

AQk = QkTk + rke
T
k ,

where Qk =
[

q1 · · · qk

]
and

Tk =




α1 β1

β1 α2 β2

. . .
. . .

. . .

βk−2 αk−1 βk−1

βk−1 αk




.

Why should we study the Lanczos algorithm?

• In its basic form, without worrying about several technical details, it
is easy to implement. More importantly, it is especially convenient for
large sparse matrices as it only requires the matrix A for matrix-vector
multiplication.

• At each intermediate step it yields a symmetric, tridiagonal matrix,
Tk, whose eigenvalues are easy to calculate.

• The eigenvalues of Tk approximate the eigenvalues of A.

• Lanczos is the optimal Krylov Subspace method in the absence of
roundoff errors.
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This last statement deserves some further commentary. In Lanczos, given
any vector of unit length q1, and assuming β0 = 0 and q0 = 0, we generate
a sequence of {αk}, {βk}, and{rk}, where

rk = (A − αkI)qk − βk−1qk−1,

and qk+1 = 1
βk

rk. Thus,

β1q2 = r1 = (A − α1I)q1

= p1(A)q1.

β2q3 =
1

β1
(A − α2I)(A − α1I)q2 − β1q1.

= p2(A)q1.

⇒ qk = pk−1(A)q1

Thus, the vectors {q1, ...,qk} span the same subspace as the Krylov subspace
{q1, Aq1, ..., A

k−1q1}. In other words, any vector which can be expressed as
a linear combination of the Lanczos vectors {qj} can also be expressed as a
linear combination of the Krylov subspace vectors {Aj−1q1}. So,

λmax(A) = max
x 6=0

xT Ax

xTx

≤ max
c6=0

cT QT
k AQkc

cT QT
k Qkc

(15.1)

≤ max
c6=0

cT Tkc

cTc

≤ λmax(Tk).

This is the sense in which Lanczos is optimal. The largest eigenvalue of Tk is
a maximum of Rayleigh quotients over all vectors within the kth Krylov sub-
space generated by A and q1. The fact that this maximum equals the largest
eigenvalue of Tk tells us that there is no other Krylov subspace method which
will yield a better estimate for the largest eigenvalue of A than the largest
eigenvalue of Tk after k steps, with this starting vector. Given a good choice
of q1, we will get excellent convergence to the largest eigenvalue. But this
dependence on the starting vector can be a downfall of the method as well, as
a bad choice of q1 will require many iterations before a reasonable estimate
can be obtained.

Unfortunately, there are numerical difficulties associated with the ro-
bustness of the algorithm. As we shall see later, this is related to a loss of
orthogonality of the vectors {qk}. As a result, the computed eigenvalues of
Tn can be quite different from the eigenvalues of A, despite the fact that
they should be identical.
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15.2 Interlaced Eigenvalues for Rank 1 Updates

Often one would want to compute eigenvalues of a rank one modification of
the symmetric matrix A, namely, the eigenvalues of

A(1) = A + vvT .

Let us call the eigenpairs of A, (λ1,u1), ..., (λn,un), and the eigenpairs of
A(1), (µ1,x1), ..., (µn,xn). Then, if x is an eigenvector of A(1),

A(1)x = (A + vvT )x = µx.

This implies that

(A − µI)x = −vvTx.

⇒ x = −(A − µI)−1vvTx.

⇒ vTx + vT (A − µI)−1vvTx = 0.

⇒ (vT x)(1 + vT (A − µI)−1v) = 0.

If v is an eigenvector of A(1) corresponding to an eigenvalue other than µ,
then vTx = 0, but we shall assume that this is not the case. Then we can
define the function

φ(µ) = 1 + vT (A − µI)−1v

= 1 + vT (UΛUT − µI)−1v

= 1 + vT (U(Λ − µI)UT )−1v

= 1 + vT U(Λ − µI)−1UTv

= 1 + wT (Λ − µI)−1w

= 1 +
n∑

i=1

w2
i

λi − µ
.

where wi = eT
i UTv. Therefore, finding the zeros of φ(µ) is equivalent to

finding the eigenvalues of A(1). If we make the assumption λ1 > λ2 > · · · >

λn > 0, then we can easily sketch φ(µ). Clearly, as µ approaches each λi

from the left, φ(µ) increases toward infinity. As µ approaches each λi from
the right, φ(µ) decreases toward −∞. Finally, as µ tends toward ±∞, φ(µ)
tends toward 1. A simple sketch of this behavior is shown in Figure 15.1.
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Figure 15.1: Sketch of φ(µ) for A5×5.

We can place an upper bound on µ1 as follows:

µ1 =
xT

1 (A + vvT )x1

xT
1 x1

= max
x 6=0

xT (A + vvT )x

xT x

≤ max
x 6=0

xT Ax

xTx
+ max

x 6=0

(xT v)2

‖x‖2
2

≤ λ1 + ‖v‖2
2,

with the last inequality resulting from the Cauchy-Schwartz Inequality. For
example, the eigenvalues of

A =




1 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2




, and A(1) =




2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2




interlace since A(1) = A + e1e
T
1 .

Sometimes φ(µ) is used on parallel architectures as part of a divide and
conquer scheme, developed by Cuppen. Given the matrix T2n, we can par-

106



tition the matrix using the concept of a rank 1 update:

T2n =




a1 b1

b1 a2 b2

. . .
. . .

. . .

bn−1 an bn

bn an+1 bn+1

. . .
. . .

. . .

b2n−2 a2n−1 b2n−1

b2n−1 a2n




=




a1 b1

b1 a2 b2

. . .
. . .

. . .

bn−1 an − bn 0

0 an+1 − bn bn+1

. . .
. . .

. . .

b2n−2 a2n−1 b2n−1

b2n−1 a2n




+




bn bn

bn bn




=

[
T

(1)
n 0

0 T
(1)
n′

]
+ bn(en + en+1)(en + en+1)

T .

Then, we could recurse downward, applying the same trick to T
(1)
n and T

(1)
n′ ,

until 2 × 2 blocks remain. Then, eigenvalues can be found using φ(µ) and
perhaps Newton’s method.

15.3 Interlaced Eigenvalues and Augmented Ma-

trices

Suppose we take a symmetric matrix A and augment it so that

A(1) =

[
A b

bT c

]
.

How do the eigenvalues of A(1) relate to those of A?
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The system of equations that defines the eigenvalue problem tells us that

(A − µI)x + bξ = 0, (15.2)

bTx + (c − µ)ξ = 0. (15.3)

Solving (15.2) for x and plugging the result into (15.3) yields

x = −(A − µI)−1bξ,
(
− bT (A − µI)−1b + (c − µ)

)
ξ = 0.

As in the previous section, if x is not the eigenvector of A corresponding to
the eigenvalue µ, then ξ 6= 0, so then finding the zeros of φ(µ) where

φ(µ) = (c − µ) − βT (Λ − µI)−1β

= c − µ −

n∑

i=1

β2

λi − µ

yields the eigenvalues. As before, we can generate a quick sketch of this
function and see that

µ1 > λ1 > µ2 > ... > λn > µn+1

under the same assumptions as before.

Clearly, as you increase the dimension of the matrix, the largest eigen-
value of the augmented matrix is larger than the largest eigenvalue of the
original matrix. Similarly, the smallest of the augmented matrix is smaller
than the smallest of the original matrix.

15.4 The Breakdown of Lanczos

Returning to the discussion of Lanczos, the eigenvalues of Tk do not exactly
interlace the eigenvalues of A; after all, there are only k eigenvalues of Tk

while A has n. However, we can show that the smallest eigenvalue of A is
smaller than the smallest eigenvalue of Tk, and we have already seen that
the largest eigenvalue of A is larger than that of Tk. But Kaniel and Paige
proved some bounds that are enlightening.

Let {λi} denote the set of eigenvalues of A, and {µi} denote the set
of eigenvalues of Tk. Furthermore let us assume that these eigenvalues are
in descending order (λ1 ≥ ... ≥ λn and µ1 ≥ ... ≥ µk), and {zi} are the
corresponding eigenvectors of A. Then after k steps of Lanczos with blocks
of size 1 (i.e., classical Lanczos),

λ1 ≥ µ1 ≥ λ1 −
(λ1 − λn) tan2 φ1

[Ck−1(1 + 2ρ1)]2
,
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where cos(φ1) = |qT
1 z1|, ρ1 = λ1−λ2

λ2−λn
, and Ck−1(x) is the k − 1st Chebyshev

polynomial of the first kind.

We can see that the governing parameters are the separation between the
largest and smallest eigenvalues of A, the separations between λ1 and λ2, as
well as that of λ2 and λn. The angle between the initial guess vector and the
leading eigenvector plays an important role. Furthermore, the denominator
will increase dramatically with k.

Similarly, we can relate the smallest eigenvalues of A and Tk:

λn ≤ µk ≤ λn +
(λn − λ1) tan2 φn

[Ck−1(1 + 2ρn)]2

where cos(φn) = |qT
1 zn|, and ρn = λn−1−λn

λ1−λn
.

We have noted in the past that for differential operators, the eigenvalues
tend to cluster near the smallest eigenvalue with relatively few outliers. To
find the smallest eigenvalues in this case, we can work with (A−σI)−1 where
σ is chosen to yield a better representation of the eigenvector. Suppose

λi = 0.1, 0.12, 0.13, ..., 2.0, 2.1, 2.2, 10, 11.

We might want to work with (A−0.5I)−1 or even A−1 to obtain the smallest
eigenvalues. If we wanted information about eigenvalues clustered near 2,
we could pick σ near 2 as well.

Unfortunately, the Lanczos algorithm does not live up to all of the claims
made using exact arithmetic for floating point computations. As k (or n)
grows large, the vectors {qi} lose orthogonality due to the use of the 3-term
recurrence relation. By using this, we explicitly construct qk+1 orthogonal to
qk and qk−1, and basically hope that the result in exact arithmetic that the
remaining vectors are also orthogonal still holds, instead of explicitly forcing
the result. This hope gives Lanczos its efficiency, but also suggests the use
of re-orthogonalization if we can detect the breakdown of the algorithm. So
we can use the Gram-Schmidt process,

rk := rk −
k−1∑

i=1

(rT
k qi)qi,

where the := operation denotes redefinition (overwriting). The obvious
drawbacks of this process are that we must store all of the previous vec-
tors qi that we must use to compute the inner products.

Paige (1971, 1976) performed detailed studies of the numerical properties
and made the following algorithmic adjustments. We shall use ∧ to denote
quantities computed from the classical Lanczos algorithm. Then,

AQ̂k = Q̂kT̂k + r̂ke
T
k + Ek,
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where Ek denotes a matrix of errors, and ‖Ek‖2 ≈ εmach‖A‖2. Also, keep

in mind that Q̂k

T
Q̂k 6= I. From this we can conclude that

|q̂k+1
T
q̂i| ≈

|r̂k
T q̂i| + εmach‖A‖2

|β̂k|
.

Thus, if β̂k gets small, we can expect to have big problems. Furthermore,
if we denote the computed eigenpairs of T̂k as (µ̂k, ŝk), and Ŷk = fl(Q̂kŜk)

(i.e., Ŷk is a matrix containing the computed approximations to eigenvectors
of A), then

|q̂k+1
T
ŷi| ≈

εmach‖A‖2

|β̂k||ŝki|
,

‖Aŷi − µ̂iŷi‖2 ≈ |β̂k||ŝki|.

So one possible solution to the problem is to calculate ‖Aŷi − µ̂iŷi‖2, and
if the result is small, then ŷi is a good approximation for an eigenvector, so
we shall declare (µ̂i, ŷi) an eigenpair, and then reorthogonalize the future
iterates against ŷi. This strategy, known as selective reorthogonalization,
effectively provides a way of deflating the matrix A.

Other solutions involve ignoring the problem, and letting Lanczos run
for ∼ 3n iterations, yielding 3n eigenvalue and eigenvector estimates, many
of which are not good, but there should be n that are good. Another strat-
egy, called complete reorthogonalization, simply involves reorthogonalizing
at every step.

15.5 Netlib

Dongarra and Gross have assembled a set of algorithms which the scientific
computing community has generally accepted as being confident. These
codes are not perfect for every situation, but are very good for the majority
of problems. The codes are freely available for download at

http://www.netlib.org
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Lecture 16

Unsymmetric Lanczos,

Orthogonal Polynomials, and

Quadrature

16.1 Unsymmetric Lanczos

We have rather thoroughly discussed the Lanczos algorithm as it is applied
to symmetric matrices. What can be done when A is not symmetric? Pre-
viously, we constructed matrices T and Q such that QT AQ = T where T

is symmetric and tridiagonal, and Q is orthogonal. This is not possible if
A 6= AT . Instead, we shall attempt to construct matrices Q and T such that

Q−1AQ = T =










α1 γ1

β1 α2 γ2

. . .
. . .

. . .

βn−2 αn−1 γn−1

βn−1 αn










.

Note that further difficulty arises when we attempt to compute the eigen-
values of T since QR iterations only preserve the tridiagonal structure when
T = T T .

In the generation of the algorithm, we shall attempt to form

A = QTQ−1

AT = Q−T T T QT

≡ PT T P−1.

That is, we will form sequences of vectors {qi} based on A, and {pi} based

111



on AT . Since P = Q−T , we have orthogonality relations

PQT = I

QT P = I

Looking at our equations for A and AT ,

AQ = QT

⇒ Aqk = βkqk+1 + αkqk + γk−1qk−1.

AT P = PT

⇒ ATpk = γkpk+1 + αkpk + βk−1pk−1.

So,

pT
k Aqk = αk.

Furthermore,

βkqk+1 = rk

= (A − αkI)qk − γk−1qk−1.

γkpk+1 = sk

= (A − αkI)Tpk − βk−1pk−1.

Thus,

pT
k+1qk+1 = 1

=
sT
k rk

γkβk

.

⇒ γk =
sT
k rk

βk

.

Therefore, γk and βk are not defined uniquely. By convention, one often
chooses βk = ‖rk‖2.

Algebraically, everything looks fine, but computationally, it leaves much
to be desired. If rk = 0, then iterations terminate. This results in the
formation of an invariant subspace of A, namely [q1, ...,qk]. Furthermore,
the eigenvalues of Tk are eigenvalues of A. So, this is not a bad situation to
be in. Similarly, if sk = 0, iterations terminate with the vectors [p1, ...,pk]
forming an invariant subspace of AT , and the eigenvalues of Tk are again
eigenvalues of A.

The bad situation is if sT
k rk = 0. Then we truly break down since βk

and γk cannot be constructed. This situation is a mathematical possibility
as well as a computational possibility.
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One solution to this problem is due to Parlett. He devised a look-ahead
strategy. The idea is to augment the sequences, but now, Tk is not tridiag-
onal. Instead you get a tridiagonal matrix, with a step associated with the
look-ahead iterations, when they are needed:

Tk =

















× ×
× × ×

× × ×
× × × × ×

× × × ×
× × ×

× × ×
× × ×

× ×

















.

Once we have generated Tk, two problems arise. First, mathematically,
how do the eigenvalues of Tk relate to those of A? And, secondly, how do we
compute the eigenvalues of Tk? This second problem is a legitimate problem
since Tk is not symmetric, so standard QR iterations will introduce a filling
of the upper right quadrant of non-zeros, resulting in an upper Hessenberg
form. Newton’s method produces real valued roots of polynomials given
real initial guesses, so perhaps we could use a complex set of initial guesses.
Alternatively, we could use a method based on finding roots of quadratics,
such as Muller’s Method. The generalization of QR iterations referred to
as LR iterations will preserve the tridiagonal form, but there are numerical
issues with this algorithm. The first question has yet to be resolved as well.

An alternative to Lanczos is to use Arnoldi iteration, which will generate
an upper Hesenberg form:

AQ = QH.

⇒ Aq1 = h11q1 + h21q2.

∴ h11 = qT
1 Aq1,

h21 = ‖Aq1 − h11q1‖2,

q2 =
1

h21
(Aq1 − h11q1).

One proceeds in a similar manner to complete the construction. This con-
struction is also used in some methods for solving Ax = b. One of these
methods is known as Quasi-Minimal Residual (QMR).
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16.2 Orthogonal Polynomials

Let pj(x) be a polynomial of degree less than or equal to j. Then we say a
family of polynomials {pk(x)} are orthogonal with respect to w(x) if

∫ b

a

pr(x)ps(x)w(x)dx = 0 for r 6= s.

Alternatively, given a distribution function f(x), the family is said to be
orthogonal with respect to f if

∫

pr(x)ps(x)df = 0 for r 6= s.

With this representation, we can include discontinuous distribution func-
tions. The family of polynomials are called orthonormal if they are orthog-
onal and

∫
pr(x)pr(x)df = 1.

All families of orthogonal polynomial will satisfy a 3-term recurrence
relationship of the form

pr+1(x) = (x − αr+1)pr(x) − β2
rpr−1(x), p0(x) = 0, p1(x) = 1.

This implies that

xpr(x) = pr+1(x) + αr+1pr(x) + β2
r pr−1(x). (16.1)

Let us now define a vector of polynomials in x,

πn(x) =






po(x)
...

pn(x)




 .

Then (16.1) tells us

xπn(x) =










α1 1
β2

1 α2 1
. . .

. . .
. . .

β2
n−2 αn−1 1

β2
n−1 αn










πn(x) + pn(x)en.

∴ xπn(x) = Tπn(x) + pn(x)en.

Thus, if we wanted to find the roots of pn(x) (i.e., all x = λi such that
pn(λi) = 0), we should solve the eigenvalue problem

λiπi = Tπi.
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Recall that for this matrix T , there exists a diagonal matrix D such that

DTD−1 =










α1 β1

β1 α2 β2

. . .
. . .

. . .

βn−2 αn−1 βn−1

βn−1 αn










,

which is clearly symmetric. Hence, shifted QR iterations would work quite
well here. Furthermore, this formulation shows that the roots are clearly
real valued and distinct if each βi 6= 0. We can also find bounds on these
roots from Gerschgorin disks, and other means.

16.3 Gaussian Quadrature

Suppose we wanted to numerically evaluate (approximate) an integral. We
can follow the suggestion of Riemann summation, dividing the interval into
regions (quadrants), and approximating the integrand as a sum of area cal-
culations,

∫ b

a

g(x)df(x) ≈
n∑

i=1

wig(xi).

The points of evaluation of g, {xi}, are called nodes, and the coefficients that
proceed them, {wi}, are called weights. One method for choosing the weights
and nodes is to first pick nodes, perhaps uniformly spaced across [a, b], then
construct the interpolant of g based on these nodes, and then selecting the
weights so that the interpolant is integrated exactly. But we can clearly get
better methods if we choose the nodes and weights more carefully.

We shall use a technique known as moment matching. The kth moment
is

µk =

∫ b

a

xkdf.

We then pick n, and select weights and nodes so that the first 2n moments
are computed exactly:

µk =

n∑

i=1

wix
k
i , for k = 0, 1, ..., 2n − 1.

Since we have 2n free parameters to choose from it is reasonable to think
that this method might succeed, but this system of equations is non-linear,
so we cannot be sure without performing some analysis first.

Suppose g(x) is a polynomial of degree 2n−1 (i.e., g ∈ P2n−1). We shall
show that there exists {wi} and {xi} such that

∫ b

a

g(x)df =
n∑

i=1

wig(xi).
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Furthermore, for more general functions, G(x),

∫ b

a

G(x)df =

n∑

i=1

wiG(xi) + E[G]

where

1. xi are real, distinct, and a < xi < b for i = 1, ..., n.

2. wi > 0.

3. E[G] = G(2n)(ξ)
(2n)!

∫ b

a

∏n
i=1(x − xi)

2df .

Notice that this method is exact for polynomials of degree 2n − 1 since the
error functional depends on the (2n)th derivative of G.

To prove this, we shall construct an orthonormal family of polynomials
{pi(x)}, so that

∫ b

a

pr(x)ps(x)df =

{

0 r 6= s,

1 r = s.

We choose {xi} to be the roots of the nth polynomial in this family. Now,
we will construct the interpolant, Ln−1, of g(x) through the nodes:

li(x) =
pn(x)

(x − xi)p′n(xi)

∴ li(xj) =
pn(xj)

(xj − xi)p′n(xj)

=

{

0 i 6= j

limx→xi

pn(x)−pn(xi)
x−xi

· 1
p′n(xi)

= 1 i = j.

li(x) ∈ Pn−1

Ln−1(x) =
n∑

i=1

g(xi)li(x).

∴ Ln−1(xj) =
n∑

i=1

g(xi)li(xj) = g(xj)lj(xj) = g(xj).

We shall now look at the interpolation error function

e(x) = g(x) − Ln−1(x).

Clearly, since g ∈ P2n−1, e ∈ P2n−1. Since e(x) has roots at each of the roots
of pn(x), we can factor e so that

e(x) = pn(x)r(x),
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then r ∈ Pn−1. The integral of g can be written as

∫ b

a

g(x)df =

∫ b

a

Ln−1(x)df +

∫ b

a

pn(x)r(x)df

=

∫ b

a

Ln−1(x)df

=

∫ b

a

n∑

i=1

g(xi)li(x)df

=
n∑

i=1

g(xi)

∫ b

a

li(x)df

≡

n∑

i=1

g(xi)wi

where wi =
∫ b

a
li(x)df =

∫ b

a

pn(x)
(x−xi)p′n(xi)

df . If this formula were easy to
evaluate exactly, we could use it to find the weights. If not, once we have
computed the nodes, we could use moment matching, and solve an n × n

system of linear equations to obtain the weights.
It is easy to show that the weights are positive. Since the interpolation

basis functions li ∈ Pn−1, l2i ∈ P2n−2,

0 <

∫ b

a

l2i (x)df =
n∑

j=1

wj l
2
i (xj) = wi.
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