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Chapter �

Examples of di�erential

equations

��� Physical pendulum

Our primary goal would be to present examples of typical ordinary di�erential
equations as they appear in various physical theories� The �rst example is the
second order nonlinear di�erential equation describing a physical pendulum�

d��

dt�
� �g

l
sin���� �����

Here � � ��t�	 t is time	 � is the angle of the pendulum with the vertical
axis	 l is the length of the pendulum and g is the acceleration due to gravity�
For this equation initial data �Cauchy data� should be posed� For instance��

�
��t�jt�� � ���
d�

dt

����
t��

� ����

The particular feature of this equation is that we can integrate it once ob

taining so called �rst integral of motion� New variables are introduced�

d�

dt
� �� � �

is accepted as the dependent variable and � is accepted as the independent
variable� Then ����� can be rewritten as

�

�

d ���

d�
� �g

l
sin����
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Integrating this equation we arrive to the �rst order equation

�

�
��� � g

l
cos��� � E�

This �rst order integral of motion corresponds to conservation of energy E
at the pendulum oscillations� The derived equation after returning to old
variables is simpli�ed to

d�

dt
�

r
E � �

g

l
cos����

which in its turn can be easily integrated

t �

Z �

��

�p
E � ��g�l� cos���

d�� �����

Unfortunately the integral at the right hand side of ����� can not be pre

sented in terms of elementary functions and is known as an elliptic integral�
In the studied simple case the problem of numeric solution of the given dif

ferential equation is reduced to numeric quadratures which can be performed
by Newton
Cotes numeric integration�

��� Normal waves in the ocean waveguide

Another example gives a theory of the long
range propagation of sound waves
generated by a monochromatic point source in a sound channel in the ocean
�ocean waveguide�� It is an important problem in the underwater acous

tics� This channel appears because the velocity of sound propagation has
a minimum at a certain depth� This problem can be studied under various
assumptions about the structure of the water layer and the ocean bottom�
Here the simplest case is considered when the properties of the water layer are
independent of horizontal coordinates and the bottom is a uniform nonelastic
half
space in which waves propagate with a constant velocity� Then the �eld
of a sound wave u�r�� r � �x� y� z�	 is the solution of the problem

�u�
��

c�
u � ���r� r��� � � z � H� ���
�

�u�
��

c�H
u � �� z 	 H�



���� NORMAL WAVES IN THE OCEAN WAVEGUIDE �


u


z

����
z�H��

�
�

�


u


z

����
z�H��

�

Here ��r� r�� is the delta function that represents a point source at r�	
r� � ��� �� z��	 H is the depth of the ocean	 � is the frequency	 c�z� is the
sound velocity in a water layer	 cH the sound velocity in the soil	 cH 	 c�z�	
and � is the density of the soil �the water density is assumed to be unity��

The problem can be solved by separating the variables in the cylindrical
coordinate system z	 �	 �� Neglecting the decay of the wave �eld as a result of
a propagation along the horizontal coordinates	 the amplitude of the acoustic
�eld is represented as a sum of so
called normal modes

u�z� � �
MX

m��

i

�
H

���
� �k
n��Am�m�z�� �����

The solution contains the factor �i���H
���
� that represents a cylindric wave

generated by a point source and the factor �m�z� that describes the depen

dence of this wave amplitude on depth of the observation point� Equations
���
� imply that �m�z� are the eigenfunctions of the homogeneous boundary
value problem for the vertical coordinate z����

��
����z� � p��n��z�� 
����z� � ��
���� � ��

���H� �
p

�

q

� � n�H��H� � ��

�����

Here p � �d�c� is a large dimensionless parameter of the problem	 c� �
minc�z�	 d is a characteristic scale of the coordinates� The eigenvalues 
�m of
the problem ����� determine the phase velocities cm of normal modes �m�z�
as

cm �
�d


mp
�

The coe�cients Am of the normal mode expansion ���
� can be found from
the position of the source

Am �
�m�z��

dN�
m

�

The constants N�
m are the normalization factors of the functions �m�z� ex


tended to the semi
axis ��� ��� Since for z 	 H the functions �m�z� can be
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written explicitly	 we get for N�
m

N�
m �

Z H

�

��
m�z�dz �

��
m�H�

�p
p

� � n�H

�

The primary task in the problem under consideration is to calculate asymp

totics of phase velocities cm and eigenfunctions �m�z� for large values of p�
The calculations have two peculiarities� First	 for a given position of the
source and the observation point	 that is	 for given z and z�	 the terms in ex

pansion ����� for which cm � c�z�� � � or cm � c�z� � � should be omitted�
For such terms one of the factors	 either �m�z� or �m�z��	 is exponentially
small �the value of � is determined by desired accuracy of calculations�� Sec

ond	 the total �eld u�r� is a result of interference of many normal modes	
and an important role in summing their contributions is played by the dif

ferences in phase velocities� The accuracy of calculating the functions �m�z�
might therefore be lower than the accuracy with which phase velocities are
computed�

��� Waves in the shallow water

Around hundred years ago a famous nonlinear partial di�erential equation
�which now is known as Korteveg
de
Vries �KdV� equation� was proposed in
order to describe the propagation of waves in shallow water� This equation
can be written as

�xxx � ���x � 
�t � �� �����

where � � ��t� x�� Particular solutions of ����� are functions

� � �
c

�

�

cosh�
�p

�c
� �x� ct� ��

��
where c and � are constants�

Another way to solve ����� is possible� New variables are introduced

��t� x� � t�����w��z� � w��z��

and
z � xt���



���� PAINLEVE EQUATIONS �

with the following di�erentiation rules





x
� t����

d

dz
�





t
� �


z�

x�
d

dz
�

�xxx � t�	���w� � w��� ����x � ��t�	���w� � w���w� � w����

�
�t � t�	������w� � w��� z�w� � w�����

They induce reduction of the KdV equation to the ordinary di�erential equa

tion

�w� � w����� � ��w� � w���w� � w��� � ��w� � w��� z�w� � w����

which in its turn can be reduced to a second order equation

v�� � �v� � zv � �� �����

This equation belongs to the set of the so
called Painleve equations which
enjoys the so
called Painleve property�

��� Painleve equations

Suppose that an n
th order nonlinear ODE

wn�z� � G�wn��� � � � � w� z� �����

is studied with the function G�wn��� � � � � w� z� having good analytical prop

erties in its variables which we specify later� Solutions of this equation as
functions of the independent complex variable z may have singularities de

termined by the analytical behavior of the function G�wn��� � � � � w� z� only
�without taking into account initial data for the solution�� These singularities
are called �xed singularities� On the contrary those singularities of solutions
which can not be predicted by the coe�cients of the equation and which
change their position if initial data for the solution change are called mov�
able singularities� The movable singularity may be a pole of the solution	 an
essential singularity	 a branch point �both algebraic and transcendental��

Examples

The equation

w���z� � �w����z� � � �����
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has the solution

w�z� � ln�z � c�� � c�� ������

Hence	 eq� ����� has a movable singularity which is a transcendent branch
point�

Linear equations which may be considered as a special case of nonlinear
equations have no movable singularities�

In a series of articles started by P� Painlev�e the following problem has
been solved� Consider the second
order nonlinear ODE of the form

q���t� � F �t� q� q��� ������

where F �t� q� q�� is a rational function in its arguments� The question arises�
when solutions of such an equation have no movable �depending on initial
data� critical points� By critical points are meant branch points and essential
singularities� In this case movable singularities may be only poles of the
solution� Absence of the movable critical points is known as the Painlev�e
property� All equations �namely	 �� of them� of the form ����� possessing the
Painlev�e property have been found� Among these are many solvable in terms
of elementary or other known functions �e�g� elliptic functions�� But several
equations did not simplify to the known equations� Nowadays they usually
are called Painlev�e equations denoted by P V I	 P V 	 P IV 	 P III 	 P II and P I �
Although the method of investigation proposed by Painlev�e is su�ciently
simple the practical calculations involve considering many special cases and
therefore are rather laborious� Since the original studies on the problem
have to our mind more historical interest than the practical meaning we give
here a list of Painlev�e equations� Standard Painlev�e class equations are the
following

P V I
z y�z� � y�� � �

�

�
�

y
�

�

y � �
�

�

y � z

	
�y��� �

�
�

z
�

�

z � �
�

�

y � z�

	
y�

� y�y � ���y � z�

z��z � ���

�
� �

�z

y�
�
��z � ��

�y � ���
�
�z�z � ��

�y � z��

	
� �� ������

�More often F is considered even to be a second�order polynomial in q��
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P V
z y�z� � y�� �

�
�

�y
�

�

y � �

	
�y��� �

�

z
y�

� �y � ���

z�

�
�y �

�

y

	
�
�y

z
�
�y�y � ��

y � �
� �� ����
�

P IV
z y�z� � y�� � �

�y
�y��� �




�
y� � �z� � ��z� � ��y � �

y
� �� ������

P III
z y�z� � y�� � �

y
�y��� �

�

z
y� � �

z
��y� � ��� �y� � �

y
� �� ������

P II
z y�z� � y�� � y� � zy � � � �� ������

P I
z y�z� � y�� � �y� � z � �� ������

Above the conventional notation for Painlev�e equations was used� The de

rived equation ����� coincides with P II at particular value of a parameter
� � ��

One of the main advantages of Painlev�e equations in comparison to other
nonlinear equations is that beyond local solutions global solutions of these
equations can be constructed with prescribed asymptotic behavior at certain
points of independent variable in complex plane� This fact is due to the
isomonodromic deformation theory which recently has strongly in�uenced
the theory of special functions�

��� Pr�ufer transform

Suppose that a second order ODE of the form

y���x� � p�Q�x� ��y � � ������

is considered with appropriate boundary conditions	 say

y��� � y�L� � ��

It is assumed that
Q�x� �� � � on ��� L�
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resulting in the fact that all solutions of ������ are oscillating� The parameter
� plays the role of eigen value parameter� The parameter p is supposed to
be large� This causes di�culties in numerical solution of �������

The principal idea of Pr�ufer transform is to present the solution with
the help of two auxiliary function � the amplitude and the phase� The
�ne structure of the solution could be various� Here we shall focus on one of
possible strategies� Consider a comparison equation with constant coe�cient�

w����� � w��� � �� ������

Those solutions w��� are chosen linearly independent of its derivative �for
example	 w � sin����� Solutions of ������ are sought in the form

y � A�x�w�p� �x� � h�x��� ������

and in addition it is required that the amplitude A�x� and the phases � �x�
and h�x� satisfy �rst order equations� The function � �x� is called the main
term of the phase and h�x� is the correction term of the phase� For the
derivative y�x� we have

y� � A�w �Aw�p� � �Aw�h��

The next di�erentiation will produce the second derivative A��� To avoid this
we choose the correction term of the phase h�x� such that it nulli�es the
coe�cient of A�	 that is

A�w �Aw�h� � ��

which results in

A�

A
� �w

�h�

w
� ������

Note	 that the functions A and h both have an oscillating character�
Further di�erentiation yields

y�� � A�w�p� � �Aw�p� �� �Aw��p� �h� �Aw��p��� ����

or after use of ������ and ������

A�w�p� � �Aw�p� ��Aw��p��� ��� �Aw��p� �h� � p�QAw � �� ������
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First we require that the sum of the terms with the highest power of p be
zero

�� ��� � Q� ����
�

or
� � �

p
Q

with

� �� �
Q�

�
p
Q
�

This gives the expression for the main part of the phase	 namely the function
� �x�

� �

Z p
Qdx� ������

After manipulation with ������

A�w�p� � �Aw�p� �� �Aw��p� �h� � ��

��w���h�

w
� � � w�� �� � � �h�w � ��

the equation for the correction h�p� x� is obtained

h�� �


�w��� � w�

�
� ww�� ��� ������

Suppose that the solution w is chosen as

w � sin���� w� � cos����

Then it holds
�w��� � w� � ��

and the equation for h�x� p� reduces to

h� � ww�
� ��

� �
�

which simpli�es to

h� � ww�
Q�

�Q
�

Q�

�Q
sin��p� � �h��
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Returning to the equation for the amplitude we obtain the equation

A�

A
� ��w���

Q�

�Q

with the solution

A � A� exp

�
�
Z �

cos��p� � h�
Q�

�Q



dx

	
�

A� exp

�
�
Z �

� � cos��p� � �h��
Q�

�Q



dx

	
� ������

It means that the Pr�ufer transform reduces solution of the initial linear equa

tion ������ to two explicit integrations and solution of a nonlinear �rst order
equation for h�������

������

� �

Z p
Qdx�

A � A� exp

�
�
Z �

� � cos��p� � �h��
Q�

�Q



dx

	
�

h� �
Q�

�Q
sin��p� � �h��

The latter is solved by methods typical for nonlinear equations considered in
the next chapter�



Chapter �

Numerical methods for

initial�value problems

��� Introduction

����� Initial�value problem

As we already seen many practical problems of physics can be reduced to the
solution of ordinary di�erential equations� General n
th order di�erential
equation can be written as

F


x� y�x�� y��x�� � � � � y�n��x�

�
� �� �����

De�ning the vector
function z�x� as

y�x� � z��x�� y��x� � z��x�� � � � � y�n����x� � zn���x�� �����

equation ����� can be written as

F


x� z��x�� z��x�� � � � � zn���x�� z�n���x�

�
� ��

Combining it with ����� yields the system of �rst
order di�erential equations����
���

F


x� z��x�� z��x�� � � � � zn���x�� z�n���x�

�
� ��

z�n���x� � zn���x��
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
z���x� � z��x��

���
�

�
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Evidently	 equation ����� is equivalent to system ���
�� Reduction of equation
����� to the system of �rst
order di�erential equations is always possible	 but
is not unique�

Equation ����� or system ���
� should be complimented with some addi

tional conditions that �x a unique solution� It is well known that for the
di�erential equation of the n
th order one needs to specify n conditions� In
this chapter we consider only such cases when these conditions specify the
values of the unknown function y�x� and its derivatives y��x�	 � � � 	 y�n����x�
at a single value x� of the argument� The problems which are originated
by such conditions are called initial
value problems for di�erential equations
or Cauchy problems� The cases when the additional conditions specify rela

tions between the values of the unknown function and�or its derivatives at
di�erent values of the argument are discussed in the next chapter�

It is convenient to transform equation ����� to the form resolved with
respect to the highest order derivative

y�n��x� � f


x� y�x�� y��x�� � � � � y�n����x�

�
�����

and correspondingly to rewrite system ���
� in the form

z��x� � F �x� z�x�� � �����

where z � �z�� z�� � � � � zn���T 	 and the vector
function F has the following
components

Fj � zj�x�� j � �� �� � � � � n� ��

Fn�� � f �x� z��x�� z��x�� � � � � zn���x�� �

Note	 that sometimes it is not possible to rewrite equation ����� in the
form ����� because it requires analytic solution of a nonlinear in the general
case equation

F �x� z�� � � � � zn��� zn� � �

for zn�
Nevertheless most numerical methods exploit the form ����� of the di�er


ential equation or the form ����� for the system of �rst
order equations�

����� Regularization

The important property of an initial
value problem for the di�erential equa

tion ����� is its stability with respect to small variation of initial data or
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right
hand side of the equation� The problem is called ill
conditioned if small
variations of the right
hand side cause large variations of the solution� Con

sider the example of ill
conditioned problem�

y��x� � y�x�� x�
y��� � ��

�����

The general solution of this di�erential equations is

y�x� � � � x� cex�

where c is an arbitrary constant� Its value is obtained from the initial condi

tion� In the case of problem ����� c � �� Thus y����� � ���� However if one
changes a little the initial condition	 say replace it by y��� � ������ then the
solution will become

y�x� � � � x� ������ex�

and y����� � �������
��
Evidently that due to round
o� errors the exponential will be added to

the solution y � ��x and will cause large deviation of the numerical solution
from the true one�

Thus before the application of a particular numerical method to the given
initial
value problem one needs to check if the problem is well
conditioned
and when necessary perform such its transformations to achieve solution
stability� We require that for any solution of the di�erential equation the
following estimate holds

kz�x�k � kz�x��k� x 	 x�� �����

In this case the problem is called stable�
If the problem is not stable	 then standard numericalmethods are inappli


cable and one needs to develop special numerical schemes� Some approaches
are discussed in the section ������

����� Numerical schemes

Let us �rst assume that the system ����� consists of one �rst order equa

tion and can be resolved with respect to the derivative� So	 let the Cauchy
problem to be of the form�

y��x� � f �x� y�x�� �
y�x�� � y��

�����
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It is required to �nd the function y�x� for x 	 x�� Two approaches are possi

ble� In the �rst approach the function y�x� can be searched in some analytic
form	 for example as a series� In the second approach the values of the func

tion y�x� are searched only at some nodal set fxkgk�������� �N � The methods
of the �rst type are conventionally called continuous and the methods of the
second type � discrete or �nite
di�erence�

Continuous methods are discussed in more details in chapter 
 where
boundary
value problems are considered� Here we present only the method
of series which allows a truncated Taylor series

y�x� � y�x�� � y��x���x� x�� � � � ��
�

m�
f �m��x���x� x��

m� �����

for the solution to be found�
The zero
th order term y�x�� is given by the initial value

y�x�� � y��

Substituting this value to the di�erential equation	 one �nds

y��x�� � f�x�� y���

In order to �nd higher order terms of the series ����� one di�erentiates the
equation in the problem ������ In particular

y���x�� �

f�x�� y��


x
�

f�x�� y��


y
y��x�� �


f�x�� y��


x
�

f�x�� y��


y
f�x�� y���

y����x�� �

�f�x�� y��


x�
� �


�f�x�� y��


x
y
f�x�� y�� �


�f�x�� y��


y�
f�x�� y��

��

�

f�x�� y��


y


f�x�� y��


x
�

�

f�x�� y��


y

	�

f�x�� y��� � � �

Each di�erentiation makes the formulaemore cumbersomewhich results both
in the increase of time needed for computation and �which is more essential�
in possible loss of accuracy�

Besides �niteness of the radius of convergency of the series for the function
puts additional restrictions to the applicability of the method of series� In
order not to have cumbersome formulae one is forced to deal with small
number of terms� This naturally diminishes the domain of x where the
approximation ����� can be used�
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The method of series can be modi�ed� In a neighborhood of the initial
point x� the truncated series ����� can be constructed� This approximation
for the function y�x� has acceptable accuracy only in a vicinity of x�� Let
a point x� be chosen in that vicinity and y�x�� � y� be computed by the
formula ������ Using that data the problem ����� can be reformulated as the
initial
value problem with the initial data given at the point x�� Again	 the
truncated series similar to ����� can be constructed in a neighborhood of the
point x�� In some vicinity of x� this approximation is acceptable and by
choosing new point x� and computing y�x��	 the initial problem ����� can be
rewritten with the initial data speci�ed at x � x�� Repeating the steps of
the procedure several times allows the desired value xk of the argument x to
be reached� The procedure results in a step
wise polynomial approximation
of the solution y�x� on the interval x� � x � xk�

Note	 that if only the principal order coe�cients are stored	 one gets a
discrete approximation of the solution�

In order to use �nite
di�erence methods	 let the mesh xk	 k � �� �� 
� � � �
to be introduced	 and let the values of the function y�x� at the nodes to be
searched� Denoting y�xk� � yk	 the computational rules of the form

yk�� � Y��yk�q��� yk�q��� � � � � yk� ������

or

yk�� � Y��yk�q��� yk�q��� � � � � yk� yk��� ������

can be introduced� The numerical method de�ned by the formula ������ is
called q
step explicit method and the method de�ned by the formula ������
is q
step implicit method�

In the following sections we discuss one
step explicit methods	 and multi

step explicit and implicit schemes�

����� Accuracy and stability

Every computational rule ������ or ������ is characterized by some local dis

cretization error �� The total discretization error is accumulated when the
computational rule is used many times� Formulae ������ or ������ are usually
taken in such a way	 that the approximate equality y�xk��� � yk�� becomes
the identity if the function y�x� is any polynomial of some degree m� This
can be achieved for example by the following method� Specify the function
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Y in the form of expression containing parameters aj	 j � �� �� � � � � L� Then
decompose the right
hand side of ������ in a vicinity of point x � xk�� in
Taylor series in powers of the step h up to hm and demand the zero
order
term to coincide with the value of the function y�x� at the point x � xk��

and higher order terms to be equal to zero� These requirements yield a sys

tem of equations for the parameters aj� This system is usually nonlinear
and its solvability should be examined for each particular type of functions
Y � If one manages to �nd such parameters aj that satisfy the system and
do not depend on the function f�x� y�	 then the local discretization error of
the computational rule ������ will be of order O�hm���� In order to �nd the
value of the function y�x� at a given point x	 the computational rule should
be applied approximately x�h times� If at each step the local discretization
error is of order O�hm���	 then on the whole interval the discretization error
can increase up to the order O�hm��

Besides the error	 as it was already remarked	 there is another impor

tant characteristics of the computational rule	 namely its stability� Let the
problem of stability be studied taking as an example the equation

y��x� � �Ay�x�� A � const� Re�A� 	 �� y��� � y�� ������

The solution of this equation is the decreasing exponential

y�x� � y� exp��Ax�
and the stability criteria is satis�ed for this solution� That means that for
any x � � the estimate

jy�x�j � jy�j ����
�

holds� Note	 that for a general di�erential equation the solution is stable if

Re

�

f


y

	
� ��

For the numerical scheme the condition similar to ����
� is required	
namely

jykj � jy�j� k � �� �� 
� � � � ������

Di�erent types of stability of numerical schemes are distinguished� The
method is called conditionally stable if one needs to set some restrictions
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to the step h in order inequalities ������ to be satis�ed� The method is called
�
stable if no restriction to the step is needed if the value of A lies in the
sector of the complex plane Re�A� 	 tan���jIm�A�j� The ���
stable method
is called absolutely stable�

��� One�step methods

One
step methods can be written in the form

yk�� � Y �yk��

The accuracy and stability of these methods depend on the function Y �

����� Euler method

The simplest one
step method is Euler method

yk�� � yk � f�xk� yk�h� ������

Here h � xk���xk is the step� Euler method is a modi�ed step
wise method
of series with m � �� This method can be also considered as based on the
quadrature formula of left rectangles applied to the integral in the formula

y�xk��� � y�xk� �

xk��Z
xk

f�t� y�t�� dt�

The accuracy of Euler method is of low order	 the local discretization error
is of the second order by the step h and the total discretization error is of
the �rst order	 that is

y�xk���� yk�� � O�h��� y�x�� yk�x� � O�h��

Euler method is used as a starting component in more complicated schemes�
To analyse the stability of Euler method it is needed to be applied to

problem ������� This yields

yk�� �


��Ah

�
yk�
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It is evident that the stability requirement ������ is ful�lled if h � �Re�A��jAj��
If this condition is violated	 it results in the in�nite growth of jykj for k ���
Thus Euler method is conditionally stable with the stability condition

h � �Re

�

f


y

	����
f
y
����
��
� ������

In the case of real equations this condition is reduced to

h � �

�

f


y

	��
�

����� Runge�Kutta methods

Runge
Kutta methods are based on the idea of increasing the accuracy of the
computational rule without di�erentiating the right
hand side of di�erential
equation ������ The general scheme of yk computation according to Ruge

Kutta method of order m can be presented in the following form

S� � f�xk� yk��
S� � f�xk � ��h� yk � h���S���
S� � f�xk � ��h� yk � h���S� � h���S���
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

Sm � f
�
xk � �mh� yk � h

Pm��
j�� �mjSj

�
�

yk�� � yk � h
Pm

i�� �iSi�

The coe�cients �j	 �ij and �i are chosen such to achieve the highest posible
order of the accuracy�

Consider the case m � � and illustrate the procedure of �nding the coe�

cients ��	 ���	 �� and ��� We start with the general form of the computational
rule

yk�� � yk � h
�
��f�xk� yk��

� ��f �xk � ��h� yk � ���hf�xk� yk��
�
�

������

The conditions for the coe�cients presented in formula ������ are originated
from the requirement that ������ coincides with Taylor series for the function
y�x� in as many terms as possible� It is easy to derive the decomposition of
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the right
hand side of formula ������ into series by powers of the step h�
Suppressing the arguments xk	 yk of the function f and its derivatives	 it can
be written as

yk�� � yk � ��� � ���fh � ��

�

f


x
�� �


f


y
���f

	
h��

� ��

�

�f


x�
��
� �


�f


x
y
�����f �


�


y�
��
��f

�

	
h� � � � �

Equating coe�cients at powers of the step h in this formula and in �����	 we
�nd that coe�cients at h� coincide automatically� Equating coe�cients at
h� yields the equation

�� � �� � ��

At h� there are terms with di�erent combinations of the function f and its
derivatives	 namely� 
f�
x and f 
f�
y� As the method should work for
di�erential equations with arbitrary right
hand side and the coe�cients of
the Runge
Kutta method should be independent of f 	 we equate coe�cients
at these combinations separately� That gives two more equations

���� � ���� ����� � ����

Hence there are 
 equations for � unknowns��
�

�� � �� � ��
���� � ����
����� � ����

������

The remaining arbitrariness as it can be shown is insu�cient to equate terms
at h�� Thus method ������ corresponding to any solution of system ������
has the third order for local discretization error and the second order for
the total discretization error� Two variants of the second order Runge
Kutta
method are usually used

S� � f�xk � h� yk � hS��� yk�� � yk �
S� � S�

�
h ������

and

S� � f

�
xk �

h

�
� yk �

h

�
S�

	
� yk�� � yk � S�h� ������
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Formula ������ is the analog of trapezoid quadrature	 and formula ������
corresponds to the mean rectangles� The approximate values of the function
y�x� required for both computational rules are computed by Euler method�

The application of ������ and ������ to problem ������ allows the stability
conditions to be found� Schemes ������ and ������ for ������ are reduced to

yk�� �

�
� � h

�



A�A���Ah�

�	
yk �

�
��Ah�

�

�
�Ah��

	
yk

and

yk�� �

�
� �Ah

�
� �A

h

�

		
�

�
��Ah�

�

�
�Ah��

	
yk

correspondingly� Thus in both cases the schemes are conditionally stable
with the same requirement ������ as for Euler method�

The derivation of the systems for the parameters of Runge
Kutta methods
of higher orders is more cumbersome	 but these systems can be derived and
their solutions can be found� Only some examples of the 

rd and of the �
th
order methods are presented here� One variant of the 

rd order Runge
Kutta
method corresponds to Simpson quadrature formula

S� � f

�
xk �

�

�
h� yk �

�

�
hS�

	
� S� � f�xk � h� yk � hS� � �hS���

yk�� � yk �
h

�

�
S� � �S� � S�

�
�

������

Another computational scheme is

S� � f

�
xk �

�



h� yk �

�



hS�

	
� S� � f

�
xk �

�



h� yk �

�



hS�

	
�

yk�� � yk �
h

�

�
S� � 
S�

�
� ������

Another analog of Simpson formula

S� � f

�
xk �

�

�
h� yk �

�

�
hS�

	
� S� � f

�
xk �

�

�
h� yk �

�

�
hS�

	
�

S
 � f �xk � h� yk � hS�� �



���� ONE�STEP METHODS �


yk�� � yk �
h

�

�
S� � �S� � �S� � S


�
����
�

and the analog of the method of  three eights!

S� � f

�
xk �

�



h� yk �

�



hS�

	
�

S� � f

�
xk �

�



h� yk � �



hS� � hS�

	
�

S
 � f �xk � h� yk � h�S� � S� � S��� �

yk�� � yk �
h

�

�
S� � 
S� � 
S� � S


�
� ������

are the most popular among the �
th order Runge
Kutta methods�
The stability conditions for these schemes are

h � CRe

�

f


y

	����
f
y
����
��
� ������

where the coe�cient C depends on the method� for ������ C � ����	 for
������ C � �	 for ����
� and ������ C � �����

For Runge
Kutta methods with m � � the local discretization error has
the order m � �� And there remain arbitrariness in the choice of the coe�

cients on the computational formula� For m � � the situation is di�erent�
Now the number of coe�cients appears insu�cient to increase the accuracy�
The local discretization error of order O�h�� can be achieved only in the
methods with m � �� One of the �
th order Runge
Kutta methods is the
following

S� � f

�
xk �

�



h� yk �

�



hS�

	
�

S� � f

�
xk �

�

�
h� yk �

�

��
hS� �

�

��
hS�

	
�

S
 � f

�
xk � h� yk �

�

�
hS� � 
hS� �

��

�
hS�

	
�

S	 � f

�
xk �

�



h� yk �

�

��
hS� �

��

�
hS� � ��

��
hS� �

�

��
hS


	
�
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S� � f

�
xk �

�

�
h� yk �

�

��
hS� �

�


��
hS� �

�

��
hS� �

�

��
hS


	
�

yk�� � yk �
h

���

�
�
S� � ���S� � ��S	 � ���S�

�
�

This example shows that with the increase of the degree of accuracy the
formulae become much more complicated� Besides if the function f�x� y�
lacks smoothness	 then the error can not be made smaller than the order
of the last continuous derivative of f � The stability condition also becomes
more restrictive� For the above scheme the constant C in condition ������ is
approximately equal to ���
�

Note that the results obtained according to Runge
Kutta methods do
not provide information on the errors of discretization� In practice one needs
to redo the computations twice with di�erent steps h� For example one
performs one step of computations with the step h to get approximate value
y��� and performs two steps of computations with the step h�� to get another
approximation y��� for the same value of the unknown function y�x�� Then	
knowing the order of accuracy of the method one can estimate the error
comparing these two approximations� The approximations y��� and y��� can
be also used to increase the accuracy� For example	 let the discretization
error of the scheme has the leading term

y�xk���� yk�� � Chn �O�hn���

with C depending on the derivatives of the function y�x� and on the point x�
Assuming this dependence su�ciently smooth	 one can suggest the approxi

mate value

yk�� �
�n��y��� � y���

�n�� � �

for which the order of accuracy is one degree higher�

����� Methods of quadrature formulae

When using Runge
Kutta or other methods one needs to choose the step h�
If the step is too large	 then the discretization error will be large	 if the step
is too small	 then the computational costs will increase� As it was already
mentioned in order to estimate the errors in a particular numerical procedure
and by this to check if the step size is chosen correctly one needs to do the
computations twice� From this point of view it is convenient to suggest such
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numerical schemes that allow the local discretization error to be estimated
via some intermediate values used in the scheme� Some of such methods are
considered below�

By integrating the di�erential equation in ����� can be reduced to

yk�� � yk �

xk��Z
xk

f�x� y�x�� dx � yk � h

�Z
�

f
�
xk � ht� y�xk � ht�

�
dt�

One can use a certain quadrature formula

�Z
�

"�t� dt �
NX
i��

Wi"�ti� ������

to calculate the integral	 which yields

yk�� � yk � h

NX
i��

Wif �xk � hti� y�xk � hti�� � ������

The right
hand side of ������ contains values of the function f�x� y� at y �
y�xk � hti�� These values �with the only exception of N � �	 t� � �� are
unknown� However due to the multiplier h before the sum in ������ it is
su�cient to use lower order approximations for them� If the quadrature for

mula ������ has the accuracy of order O�hn�	 then the approximations for
y�xk � hti� can be taken with the accuracy of order O�hm���� This will not
reduce the total accuracy of formula ������� In order to �nd these approxi

mate values one can use a formula similar to ������ based on a quadrature
formula of lower accuracy

�Z
�

"�t� dt �
MX
j��

Vj"�sj��

This yields

y�xk � hti� � yk � hti

MX
j��

Vif �xk � htisj� y�xk � htisj�� �
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The right
hand side can again contain unknown values of the function y�x��
They can be replaced with approximations having accuracy O�hn���� These
approximations are also obtained by a formula similar to ������� Repeating
these steps several times one comes to the formulae of the type ������ in the
right
hand side of which it is su�cient to use approximations for y�x� with
the discretization error of order O�h��� Such approximations are given by
Euler method �������

Consider some examples of the method described above� Let N � �
and the algebraic accuracy M of the quadrature formula ������ be equal to
one� The most popular formulae of this type are the formula based on left
rectangles quadrature formula which results in Euler method ������ and the
formula of right rectangles which yields implicit method

yk�� � yk � hf�xk��� yk���� ������

Note that the computational formula ������ is absolutely stable� Indeed
in the case of equation ������ one has

yk�� � yk �Ahyk���

where from

yk�� �
�

� �Ah
yk�

and for any positive h �remind that Re�A� � �� one gets the estimate �������

In a general case the computations according to the formula ������ re

quire to solve a nonlinear equation with respect to yk��� For that an initial

approximation y
���
k is needed� Then it is iterated

y
�j�
k�� � yk � hf

�
xk��� y

�j���
k��

�
� j � �� �� � � � � J� ������

The initial approximation can be obtained by Euler method� Combining two
computational rules with only one iteration ������ yields the formula

yk�� � yk � hf
�
xk��� yk � hf�xk� yk�

�
� ���
��

Note that the results obtained by Euler method and method ���
�� provide
two
side approximations of the solution in the leading order by h� One can



���� ONE�STEP METHODS ��

apply the procedure described at the end of the previous section to increase
the order of the accuracy� This results in Euler
Cauchy method

yk�� � yk �
h

�

�
f�xk� yk� � f



xk��� yk � hf�xk� yk�

��
���
��

which has the local discretization error of the 

rd order�
Analysis of stability shows that the scheme ���
�� is stable if the condition

������ with C � � is satis�ed and the stability condition for the scheme ���
��
is the same as for Euler method�

Let now M � �	 N � �� The quadrature formula with one node which
has algebraic accuracy equal to two �M � ��	 that is the highest possible
accuracy is the formula of mean rectangles� It leeds to the computational
rule

yk���� � yk �
h
�
f�xk� yk��

yk�� � yk � hf�xk����� yk������
���
��

Here the notation xk���� � xk � h�� is introduced for simplicity� Analogous
notations are used below�

Consider the method with M � �	 N � �	 based on trapezoid quadrature
formula� One has implicit method

yk�� � yk �
h

�

�
f�xk� yk� � f�xk��� yk���

�
�

Similar to the implicit method of rectangles ������ this formula is usually
combined with Euler method

y
��

k�� � yk � hf�xk� yk��

y
��

k�� � yk �

h
�

�
f�xk� yk� � f�xk��� y

��

k���

�
�

���

�

By the upper indices in square brackets we denote here and below the order
of local discretization error	 that is

y
��

k � y�xk� �O�h��� y

��

k � y�xk� �O�h���

Thus	 method ���

� gives two approximations for y�xk�� Their di�erence
allows the accuracy of computations to be estimated and by this to check if
the step h is correctly chosen�
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Note also that compared to rule ���
�� based on Gauss quadrature for

mula	 rule ���

� appears mere e�ective� Indeed	 to perform one step of
computations	 that is to pass from x � xk to x � xk�� according to rule
���
�� the right
hand side of the equation should be calculated two times�
When using the rule ���

� the right
hand side should be computed two

times	 too� However	 the value f�xk��� y
��

k��� can be used at the next step if

scheme ���

� is modi�ed to

y
��

k�� � yk � hf�xk� y

��

k ��

y
��

k�� � yk �

h
�

�
f�xk� y

��

k � � f�xk��� y

��

k���

�
�

���
��

The accuracy of scheme ���
�� is a bit lower than that of the scheme ���

�	
but has the same order O�h���

The stability conditions for schemes ���
��	 ���

� and ���
�� are the same
as for Euler method�

For M � 
	 N � � one can use Gauss
Rado quadrature formula

�Z
�

f�x� dx � �

�

�
f��� � 
f���
�

�
�

and mean rectangles formula for the computation of y��
k����� This gives the
scheme

y
��

k���� � yk �

h
�f�xk� yk��

y
��

k���� � yk �

�h
� f�xk����� y

��

k������

y
�


k�� � yk �

h

f�xk� yk� �

�h

 f�xk����� y

��

k������

equivalent to the 

rd order Runge
Kutta method �������
One more example with M � 
	 N � �	 is based on Simpson method

y
��

k���� � yk �

h
�
f�xk� yk��

y
��

k���� � yk �

h



�
f�xk� yk� � f�xk����� y

��

k�����

�
�

y
��

k�� � yk � hf�xk����� y

��

k������

y
�


k�� � yk �

h
�

�
f�xk� yk� � �f�xk����� y

��

k����� � f�xk��� y

��

k���

�
�

���
��

One step of computations requires the right
hand side of the di�erential equa

tion to be calculated � times� Taking into account that the value f�xk��� y

��

k���
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can be used at the next step	 one can conclude that the e�ectiveness of that
method is the same as of Runge
Kutta method ������� However compared to
Runge
Kutta method the method ���
�� allows the local discretization error
to be estimated� Besides the stability of the method ���
�� is a bit better	
since the coe�cient C in the inequality ������ for this method is approxi

mately equal to ����

��� Multi�step methods

The advantage of one
step methods is in the possibility to apply the compu

tational scheme starting from the very �rst step� In order to apply methods
������ with q 	 � one needs �rst to �nd several values yj	 j � �� �� � � � � q � �
by some one
step method� However the use of values yk��	 yk��	 � � � in the
computational rule allows the accuracy of the method to be increased without
additional computation of the right
hand side of the di�erential equation�

����� Extrapolation Adams methods

Multi
step Adams methods can be explicit or implicit� First	 consider explicit
methods� The general form of explicit Adams methods is as follows

yk�� � yk � h

q��X
i��

�if�xk�i� yk�i�� ���
��

The computational rule ���
�� is based on the computation of the integral in
the formula

yk�� � yk �

xk��Z
xk

f�x� y�x�� dx ���
��

according to the approximate formula in which the integrand is replaced by
the polynomial interpolating it at the points xk	 xk��	 � � � 	 xk�q��� Therefore
formulae ���
�� are also called extrapolation formulae� The coe�cients �i are
uniquely determined by the integration of the interpolating polynomial

�i �

xk��Z
xk

Li�x� dx� ���
��
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Here

Li�x� �
Y
j ��i

x� xk�j
xk�i � xk�j

are Lagrange polynomials�
Note that the coe�cients �i di�er from the weights in the usual quadra


ture formulae because the integration in ���
�� is carried out not along the
interval of interpolation �xk�q��� xk�	 but outside of it�

When using the rule ���
�� the right
hand side of the di�erential equation
is computed only once at a step� Nevertheless the accuracy can be of su�

ciently high order by h� This is the main advantage of multi
step methods
compared to one
step methods such as Runge
Kutta methods� The disad

vantages are twofold� Firstly	 as it was already noted	 one needs to know q
values of the function in the previous nodes� Secondly	 Adams methods do
not allow to change the step of integration so easily because the coe�cients
�i depend on the positions of nodes� The simplest case when the step h is
constant is considered below�

The method with q � � is

yk�� � yk �
h

�

�

fk � fk��

�
� ���
��

Here f�x�� y�� is denoted as f�� The local discretization error of ���
�� is
given by the formula

y�xk���� yk�� �
�

��
y����xk�h� �O�h
��

Consider the stability property of method ���
��� In the case of di�erential
equation ������ it gives

yk�� � yk � Ah

�




yk � yk��

�
�

Substituting here yk � �k yields characteristic equation

�� �
�
� � 


�
Ah

	
�� Ah

�
� �� ������

For any positive Ah the discriminant D � � � ah� �

�Ah�

� of this equation
is positive� Hence	 the zeros �� and �� are real and �� �� ��� Scheme ���
��
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is stable if j��j � � and j��j � �� It is not di�cult to check that for real A
these conditions are satis�ed if����
�Ah� �

���� � �� Ah

�

or Ah � �� Thus the scheme ���
�� is conditionally stable with restriction
������ with C � �� Compared to the second order Runge
Kutta methods the
stability condition sets stronger restrictions to the step h�

For q � 
 one gets the formula

yk�� � yk �
h

��

�
�
fk � ��fk�� � �fk��

�
�

with the local discretization error

y�xk���� yk�� �



�
y�
��xk�h


 �O�h	��

and for q � � the formula is

yk�� � yk �
h

��

�
��fk � ��fk�� � 
�fk�� � �fk��

�
������

with local discretization error

y�xk���� yk�� �
���

���
y�	��xk�h

	 �O�h���

The characteristic equations for these methods are

�� �
�
� � �


��
Ah

	
�� � �



Ah� �

�

��
� �

and

�
 �
�
� � ��

��
Ah

	
�� � ��

��
Ah�� �


�

��
Ah�� 


�
Ah�

The conditions of stability are Ah � ����� for the three
step method and
Ah � ��
 for the four
step method�
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����� Interpolation Adams methods

Implicit Adams methods �also called interpolation schemes� have the form

yk�� � yk � h

q��X
i��

�if�xk���i� yk���i�� ������

The coe�cients �i are computed by integrating the interpolation polynomials
constructed on the nodes xk��	 xk	 � � � 	 xk�q���

Formula ������ contains the unknown value yk�� in the right
hand side
and requires solving a nonlinear equation� The method of simple iterations

y
�j�
k�� � yk � h

q��X
i��

�i��f�xk�i� yk�i� � h��f�xk��� y
�j���
k�� �� j � �� �� � � �

appears to be the most natural for that� This process converges because
the derivative of the right
hand side of ������ by yk�� is small due to the
multiplier h�

To start this procedure one needs the initial approximation y���k�� which can
be obtained with the help of the explicit Adams method of the corresponding
order� Such combinations of explicit and implicit methods are known as
predictor
corrector method�

Some implicit Adams schemes are presented below� For q � �	 one has
the scheme of trapezoid method

yk�� � yk �
h

�

�
f�xk��� yk��� � fk

�
� ����
�

The local discretization error can be written as

y�xk���� yk�� � � �

��
y����xk�h� �O�h
��

For q � 
 one has the formula

yk�� � yk �
h

��

�
�f�xk��� yk��� � �fk � fk��

�
������

with the local discretization error

y�xk���� yk�� � � �

��
y�
��xk�h


 �O�h	��
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and for q � � the formula is

yk�� � yk �
h

��

�
�f�xk��� yk��� � ��fk � �fk�� � fk��

�
������

and its local discretization error is

y�xk�� yk � � ��

���
y�	��xk���h	 �O�h���

Comparing these formulae with the corresponding explicit schemes one
can note that the local discretization errors have the same order	 but the co

e�cients in the estimates are smaller� Another advantage of implicit schemes
is in their better stability� The scheme ����
� is absolutely stable� Indeed in
the case of equation ������ one has

yk�� � yk � Ah

�

�
yk�� � yk

�
�

where from

yk�� �
� �Ah��

� �Ah��
yk�

For the stability of the method the absolute value of the fraction in the right

hand side of this formula should not exceed unity which is the case for any
positive Re�A�h�

In fact method ����
� is the most accurate absolutely stable linear method�
The characteristic equation for method ������ is�

� �
�

��
Ah

	
�� �

�
�� �



Ah

	
��

Ah

��
� ��

Its zeros can be easily found

���� �
�� �Ah	

p

� � 
�Ah� ���Ah��

�� � �Ah

For any Ah 	 � the zero �� is positive and is less than unity� The zero �� is
negative and monotonously decreases with the step� Solving the inequality
�� 	 �� one can �nd the maximal step� It holds

�� �Ah �
p


� � 
�Ah� ���Ah���
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which yields Ah � �� Thus the method ������ is conditionally stable with
the restriction

h � �

�

f


y

	��
�

Similar analysis of the characteristic equation�
� �




�
Ah

	
�� �

�
�� ��

��
Ah

	
�� � �

��
Ah��

Ah

��
� �

for the four
step method ������ allows the stability condition to be found as

h � 


�

f


y

	��
�

����� BDF methods

The described above Adams methods exploit the idea of replacing the inte

grand in the formula ���
�� with interpolation polynomial� In the backward
di�erentiation formula �BDF� methods the solution y�x� is interpolated itself�
Namely	 in the BDFmethod of order n one performs polynomial interpolation
of the known data fxk�n��� yk�n��g	 � � � 	 fxk� ykg and unknown value yk��

of the function y�x� at the point xk��� The constructed interpolation poly

nomial Pn�x� is substituted into the di�erential equation and the unknown
value yk�� is found from the requirement that this equation is satis�ed at the
point x � xk��	 that is


Pn�xk���


x
� f �xk��� Pn�xk���� �

We present some examples� In the �rst order method

P� � yk �
yk�� � yk

h
�x� xk��

which yields the equation

yk�� � yk � hf�xk��� yk��� ������

for the unknown yk���
In the second order method the expression


P��xk���


x
�

�

h

�
�

�
yk�� � �yk �




�
yk��

	
�
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for the derivative of the interpolation polynomial is used� In that case the
equation for yk�� is

�

�
yk�� � �yk �




�
yk�� � hf�xk��� yk���� ������

Finally the third
order BDF method is

��

�
yk�� � 
yk�� �




�
yk � �



yk�� � hf�xk��� yk���� ������

Equation ������ already appeared �see ������� as the result of applica

tion of right rectangles quadrature formula� As it was shown this scheme
is absolutely stable� It can be also shown that scheme ������ is absolutely
stable�

��� Systems of equations and equations of the

second and higher orders

Any di�erential equation of n
th order can be reduced to a system of n
di�erential equations of the �rst order� All the above methods can be applied
to such systems� Nevertheless the speci�c features of systems derived from
higher order di�erential equations allow some times to suggest more e�ective
algorithms� Moreover	 the speci�cs of the higher order di�erential equation
can be also taken into account� For example	 e�ective methods are developed
for those second order di�erential equations which do not contain the �rst
order derivative�

We illustrate the speci�cs of the initial
value problems for higher order
di�erential equations taking as an example the equation

y���x� � f


x� y�x�� y��x�

�
������

with the initial data

y�x�� � y�� y��x�� � y���

In order to pass from the argument xk to xk�� one needs to compute the
value of the function yk�� and the value of its derivative y�k��� We rewrite
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equation ������ once and twice integrated from xk to xk��

y��xk��� � y�k � h

�Z
�

f


xk � ht� y�xk � ht�� y��xk � ht�

�
dt� ������

y�xk��� � yk � hy�k � h�
�Z

�

��� s�f


xk � hs� y�xk � hs�� y��xk � hs�

�
ds�

������

Applying quadrature formulae one gets

y�k�� � y�k � h

NX
i��

Wif


xk � hti� y�xk � hti�� z�xk � hti�

�
� ������

yk�� � yk � hy�k � h�
N �X
i��

W �
i �� � si�f



xk � hsi� y�xk � hsi�� z�xk � hsi�

�
�

����
�

Note that the quadrature formulae used for computing the integrals in
������ and ������ can be taken di�erent� If the nodes coincide	 ti � si	 the
number of calculations of the right
hand side of the di�erential equation is
reduced� One can also use the fact that the integral in ������ is multiplied by
h� and the integral in ������ is multiplied by h� Hence the quadrature formula
for the integral in ������ can have a lower by one order of accuracy than the
quadrature formula for the integral in ������� Finally note that the multiplier
� � s in ������ can be treated as the weight� Denoting Wi�� � si� � Vi and
requesting the algebraic accuracy of ������ and ����
� to be equal to some
number m	 one gets the system of nonlinear equations for the quantities ti	
Wi and si	 Vi

NX
i��

Wit
j
i �

�

j � �
� j � �� �� 
� � � � �m� ��

N �X
i��

Vis
j
i �

�

j�j � ��
� j � �� �� 
� � � � �m� ��
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In order this system to be solvable it is necessary that m � �N � � and
m � �N � � 
�

For example	 in the case of m � � one can use the method of trapezoids
and the method of left rectangles� Changing the sequence of the formulae
one has

yk�� � yk � hy�k �
�
�h

�fk�
y�k�� � y�k�� �

h
�
�fk � f�xk��� yk��� y

�
k � hfk�� �

������

Here fk � f�xk� yk� y
�
k�� Both formulae in ������ have the local discretization

error of order O�h��� Adding the formula

yk�� � yk � hy�k �
h�

�

�
�fk � f�xk��� yk��� y

�
k � hfk�

�
� ������

which does not require computing the right
hand side of the equation	 yields
the method of the �
th order� Formulae ������ and ������ also allow the
discretization error to be estimated by comparing the approximations

y
���

k�� � y�k � hfk� y

��

k�� � yk � hy�k �

�

�
h�fk

with more accurate ones

y
���

k�� � y�k�� �

h

�

�
fk � f�xk��� yk��� y

�
k � hfk�

�
�

y
�


k�� � yk � hy�k �

h�

�

�
�fk � f�xk��� yk��� y

�
k � hfk

�
�

Consider now the case of di�erential equation not containing the �rst
order derivative

y���x� � f


x� y�x�

�
� ������

Note that any linear equation of the second order can be transformed to the
form ������� The usual methods for the equations of the type ������ are the
explicit method

yk�� � �yk � yk�� � h�
NX
i��

�if�xk�i� yk�i�
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and the implicit method

yk�� � �yk � yk�� � h�
NX
i��

�if�xk���i� yk���i��

The coe�cients �i and �i are derived from the requirement that the di�erence
of the left
hand sides and the right
hand sides of these equations be of the
highest possible power of the step h�

The simplest explicit method is Verlet scheme

yk�� � �yk � yk�� � h�f�xk� yk�

widely used in molecular dynamics simulation�
One of the implicit methods of the �
th order of accuracy is the Numerov

method

yk�� � �yk � yk�� �
h�

��

�
f�xk��� yk��� � ��f�xk� yk� � f�xk��� yk���

�
�

������

�See also chapter 
��

��� Sti	 systems

Some systems of di�erential equations appear speci�cally di�cult for numer

ical solution� Usually this is the case when the processes described by the
equations in the system have signi�cantly di�erent scales of variation� Most
of the methods described above require too small step h and as a sequence
too large amount of computations� The development of e�ective algorithms
for numerical solution of such systems is an actual problem in the theory of
numerical methods�

Consider the example of the second order di�erential equation

y���x� � ����y��x� � ����y�x� � ��

The general solution of this equation is

y�x� � C�e
�x � C�e

�����x�
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Let the initial condition be y��� � �	 y���� � ��� Then the solution is

y�x� � e�x�

Now try to �nd this solution numerically� Use for example the �
th order
Runge
Kutta method ����
�� Rewrite the equation in the form of the system�

z�� � z��
z�� � �����z� � ����z��

������

The stability condition for the method ����
� applied to the system ������ is

h � ��������

Indeed	 Runge
Kutta method with the step h � ������ gives a good approx

imation	 but it requires ��� steps and ���� computations of the right
hand
side of the system in order to �nd y���� Though the solution is slowly varying
the increase of the step even to h � ����
 causes divergence of the solution�
Thus the condition of stability is de�ned by the most quick function e�����x

in the general solution of the equation independently on if it is presented or
not in the solution of the initial
value problem� Similar di�culties appear
when other single
step or multi
step methods are used�

����� Implicit trapezoids rule

One of the most satisfactory tool to solve system ������ is the use of implicit
method ����
� which is stable for any step h� For the system ������ the
method can be written as������

�����
z��xk��� � z��xk� �

h

�

�
z��xk� � z��xk���

�
�

z��xk��� � z��xk�� h

�

�
����z��xk� � ����z��xk�

� ����z��xk��� � ����z��xk���
�

In the general case the system of algebraic equations at each step requires
application of some iterative method� However in our case the solution can
be found explicitly���
��

z��xk��� �
� � ����h � ���h�

� � ����h � ���h�
z��xk� �

�h

� � ����h � ���h�
z��xk��

z��xk��� � � ����h

� � ����h � ���h�
z��xk� �

� � ����h � ���h�

� � ����h � ���h�
z��xk�
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Choosing the step h � ���	 one gets

z������ � ������������� z������ � ��������������

which is a good approximation to the exact solution

y����� � ������
������ y������ � �������
������

Repeating the computations	 after �� steps one �nds z���� � ��
���������
which is rather close to the exact value y��� � e�� � ��
����������

The implicit trapezoid method can be similarly applied to other sti�
systems� If the equations that appear at each step of the procedure can not
be solved explicitly	 one needs to use iterative methods� Usually �for not
sti� systems� it is the method of simple iterations� The method of simple
iterations converges if the Jacobian

Jij �

fi�x� z�


zj
�

satis�es the condition

h

�
kJk � �� ������

In the case of sti� problems the Jacobian J contains large elements and the
condition ������ signi�cantly shrinks the step h�

To overcome this di�culty there is a useful modi�cation of implicit trape

soids method� This modi�cation is in the use of Newton method� Then no
di�culties with convergence arising from large negative derivatives 
fi�
zj
are encountered� However	 each iteration requires computation of the Jaco

bian�

����� Implicit Runge�Kutta methods

We already remarked that the implicit trapezoid methods ����
� is the most
accurate among absolutely stable linear methods� The increase of accuracy
is possible if nonlinear schemes are used� We consider only the methods of
Runge
Kutta type� In the section ����� explicit formulae for the quantities
Si were used� In order to increase the stability of the scheme	 let us use the
formulae

Si � f�xk � �ih� yk � h

mX
j��

�ijSj� i � �� �� � � � �m�
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That is	 �nding Si requires now solution of the system of nonlinear equations�
If �ij � � for j 	 i this system is triangular and can be approximately
linearized with one Newton iteration

Si �

�
�� h�iify

�
xk � �ih� yk � h

i��X
j��

�ijSj

����




f
�
xk � �ih� yk � h

i��X
j��

�ijSj

�
� ������

The value yk�� is computed by the formula

yk�� � yk � h

mX
i��

�iSi ������

as in the conventional Runge
Kutta methods� The methods	 based on the
formulae ������ and ������ are called linearized semi
explicit Runge
Kutta
methods or Rozenbrok methods�

Consider the example of the method with m � �� In that case there
are � coe�cients that should be chosen to achieve highest possible accuracy�
As in the case of conventional Runge
Kutta methods we equate coe�cients
in the series decompositions of the right
hand side of formula ������ and in
Taylor series for the solution y�xk�h�� The leading order coe�cients coincide
automatically� Equating coe�cients at �rst powers of h yields equation

�� � �� � ��

At h� there are terms containing fx and fyf � Equating coe�cients at these
terms separately yields the equations

���� � ���� � ����
����� � ����� � ����� � ����

At the next order there are combinations fxx	 fxfy	 fyyf�	 fxyf and f�y f 	
which yields equations

���
�
� � ���

�
� � ��
�

������� � ������� � ������� � ����
���

�
�� � ��������� � ��
�

������� � ������� � ������� � ��
�
���

�
�� � �������� � �������� � ���

�
�� � ����
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Though there are � equations and there are only � parameters	 there exist
two solutions

�� �
�
�
	 i

�

p

� �� �

�
�
� i

�

p

�

�� �
�


	 i

��

p

� �� �

�


	 i

��

p

�

��� �
�


	 i

��

p

� ��� �

�
�
	 i

�

p

� ��� �

�


� i

��

p

�

The disadvantage of such approach is in the use of complex calculus� How

ever	 as it can be easily checked	 the method is absolutely stable� Indeed for
������ it reduces to

yk�� �
�� �

�
Ah� �

��
�Ah��

� � �
�
Ah� �

��
�Ah��

yk�

��
 Special cases

����� Singular points

Di�erential equations for which the right
hand side or its derivative of some
order can be in�nite at some points of the interval present additional di�culty
for numerical solving� Let the initial point x� be singular	 that is	 f�x�� y��
does not exist� Evidently that no explicit method can be applied to such
initial
value problem� Although the use of some implicit schemes is possible	
they give wrong results�

There are three main approaches to �nding solutions of a di�erential
equation with singular initial point

�� Change of variables that eliminates the singularity�

�� Construction of an approximate analytic solution in a small vicinity of
the singular point and passage to another initial point with the help of
this solution�


� Development of special computational schemes that take into account
the speci�cs of the right
hand side of the di�erential equation�

Let us illustrate the above approaches taking as an example the following
problem �

y��x� � �
�
p
x
� y��x��

y��� � ��
������
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In the �rst approach one can make the substitution t �
p
x and denote

y�x� � Y �t�� Then the problem ������ is transformed to�
Y ��t� � �� �tY ��t��
Y ��� � ��

which has no singularity�
In the second approach one can apply for example Picar method� Setting

the initial approximation as y��x� � � the problem ������ can be rewritten
in the form of iterative rule

yj���x� �

xZ
�

�
�

�
p
s
� y�j �s�

	
ds�

It determines

y��x� �
p
x� y��x� �

p
x� x�

�
� y��x� �

p
x� x�

�
�

�

�
x�
p
x� x	

��
�

The above approximations give

y������ � ��
���� y������ � ��
���� y������ � ��
��
�

which allows the initial data y��� � � in the problem ������ to be moved to
the point x � ����

In the third approach one can construct a special scheme for equation
������� For that the equation should be rewritten in the integral form

yk�� � yk �

xk��Z
xk

�
�

�
p
s
� y��s�

	
ds�

The �rst term can be integrated analytically and left rectangles quadrature
formula can be applied to the second term� This results in the explicit scheme
similar to Euler method

yk�� � yk �
p
xk�� �pxk � hy�k�

If the right
hand side of the equation has singularities at the internal
points of the interval �x�� x�	 then since in general f�x� y� depends on the
unknown solution y�x� it is impossible to say in advance at what points there
will be singularities� Due to this fact it is preferable to apply the approach
of special schemes adequate to such problems�
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����� Special schemes

The methods of special schemes construction are based on the study and use
of the properties of general solutions for a class of similar equations� The
main idea is in the choice of appropriate representation for the solution� For
example	 one can replace some functions of the argument x in the initial
di�erential equation by constants� This enables to transform the equation

y��x� � f


x� y�x�

�
to some other equation

u��x� � g


x� u�x�

�
that has explicit solution u�x��

Further several approaches are possible� Either to consider the ratio
v�x� � y�x��u�x�	 the di�erence w�x� � y�x� � u�x� or some other more
complicated combination of y�x� and u�x� and derive for this function a new
initial
value problem� The equation for v�x� is

v��x� �
f


x� v�x�u�x�

�� v�x�g


x� u�x��

u�x�

and for w�x� it is

w��x� � f


x�w�x� � u�x�

�� g


x� u�x�

�
�

If u�x� su�ciently well approximates the solution y�x�	 then the new initial

value problem for v�x� or w�x� appears to be more appropriate for numeric
solution�

In the other approach the auxiliary solution u�x� is used on a small in

terval of the argument x in a similar way as in the step
wise variant of the
method of series the truncated Taylor series was used� We illustrate it taking
the example of the equation

y��x� � �y��x�� ��x��

If ��x� � const the equation

u�x�� � �u��x�� r�

has explicit solution
u�x� � �r tan�rx� C��
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The constant C is found from the condition u�xk� � uk and further u�xk���
is determined� This results in the scheme

arctg
�uk��

r

�
� arctg

�uk
r

�
� �hr�

To rewrite this scheme for the function y�x� one takes r �
p
��xk����� at

each step	

arctg

�
yk��p
�k����

�
� arctg

�
ykp
�k����

�
� �hp�k�����

Solving this equation for yk��	 yields the special explicit scheme

yk�� �
p
�k����

yk �p�k���� tan


h
p
�k����

�
p
�k���� tan



h
p
�k����

� � ����
�

It appears that scheme ����
� is valid even if the stability condition is violated
and the exact solution has poles�

����� Equations which are not resolved for the highest
order derivative

Consider �nally equations ����� that can not be represented in the form ������
Let it be a �rst order equation

F


x� y�x�� y��x�

�
� �� ������

We can formally write
y��x� � f



x� y�x�

�
�

where for every x and y the value of the function f is de�ned as the solution
of the equation

F


x� y� f�x� y�

�
� �� ������

For solving equation ������ one can use explicit methods in which the
values of f�x� y� are determined as solutions of nonlinear equation ������
with the use of some iterative method� The value obtained by interpolation
can serve as the initial approximation for f�x� y�� This usually reduces the
number of iterations�
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When using implicit schemes	 for example of the form ������	 it is needed
to solve the system ���

��
yk�� � yk � h

q��X
i��

�ifk���i�

F �xk��� yk��� fk��� � �

for unknowns yk�� and fk���
Note also that by increasing the order of an equation it is possible to

derive from the di�erential equation ����� a di�erential equation in the form
������ Di�erentiation of equation ������ yields

Fx�x� y� y
�� � Fy�x� y� y

��y� � Fy��x� y� y
��y�� � ��

which can be resolved for the second order derivative

y���x� � �Fx�x� y� y�� � Fy�x� y� y��y�

Fy��x� y� y��
� ������



Chapter �

Numerical methods for

boundary�value problems

��� Introduction

����� Boundary�value problem formulation

For the second and higher order di�erential equations boundary
value prob

lems and spectral problems can be formulated� Here mainly linear problems
are considered	 that is the di�erential equation and the boundary conditions
are assumed to be linear� In the general form the second order linear bound

ary value problem can be writen as

��
�

y���x� � p�x�y��x� � q�x�y�x� � f�x�� a � x � b�
��y�a� � ��y

��a� � A�
��y�b� � ��y

��b� � B�
�
���

Here p�x�	 q�x� and f�x� are given functions and ��	 ��	 ��	 ��	 A and B are
given constants�

Note that if the solution y�x� should be found not only on the interval
�a� b�	 but also in its exterior	 then after solving the boundary
value problem	
that is after determining y�x� for x 
 �a� b�	 the computation of y�x� for x � a
and for x 	 b is performed by solving the corresponding Cauchy problems�

Equation �
��� can be conveniently represented in the form not containing
the �rst order derivative� This can be achieved for example by introducing

��
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the new unknown u�x� by the formula

y�x� � exp

�
���

�

xZ
p�t� dt

�
Au�x��

The function u�x� satis�es the equation

u���x� �Q�x�u�x� � F �x�� �
���

where

Q�x� � q�x�� �

�
p��x�� �

�
p��x�� F �x� � exp

�
��

�

xZ
p�t� dt

�
Af�x��

The boundary conditions formulated at the points x � a and x � b can be
of three types� the conditions of the �rst kind if �� � �� � �# the conditions
of the second kind if �� � �� � �# and the conditions of the third kind or
mixed boundary conditions with all coe�cients di�erent from zero� Note also
that by subtracting some function that satis�es the inhomogeneous boundary
conditions problem �
��� can be transformed to the boundary
value problem
with A � B � ��

����� Numerical methods

Most of numerical methods applied to boundary
value problems are based
on the same ideas that are used for initial
value problems� The unknown
function can be represented in the form of an expansion in some basic set of
functions or it can be replaced by its values at the nodes of a mesh�

The methods can be assorted into the following groups

� the methods that convert the problem to Cauchy problems �shooting
method and the method of di�erential sweep�	

� the methods that allow the approximate values of the unknown function
to be found at a discrete set of points ��nite di�erence methods�	

� the methods of collocations in which the solution is represented in the
form of decomposition in some basis and the equation is satis�ed at a
set of collocation points	
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� the projective methods	 in which the coe�cients of the decomposition
are found from the requirement that the residual is orthogonal to some
basis	

� the variational methods that reduce the problem to the minimization
of some functional�

��� Shooting method and its generalizations

����� Shooting method

One of the ideas that can be exploited in numerical schemes for boundary

value problems is in the replacement of the boundary
value condition at the
point x � b by another condition at the point x � a� Consider instead of the
problem �
��� the initial value problem��

�
y���x� � p�x�y��x� � q�x�y�x� � f�x�� a � x � b�
��y�a� � ��y

��a� � A�
��y�a� � ��y

��a� � ��
�
�
�

Its solution can be found with the use of computational schemes described
in the previous chapter� Indeed	 solving the system of equations�

��y�a� � ��y
��a� � A�

��y�a� � ��y
��a� � ��

one can �nd the initial data

y�a� � y�� y��a� � y��

for the di�erential equation� The quantities y� and y�� depend on the parame

ter �	 called the shooting parameter� Therefore the solution will also depend
on �� Performing computations up to x � b one can compute the residual
for the second boundary condition

r��� � ��y�b� � ��y
��b��B�

By the choice of the shooting parameter it is possible to make the residual
su�ciently small� Hence	 the boundary
value problem �
��� is reduced to
solution of the equation

r��� � �� �
���
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When the parameter � is found �usually by bisection method�	 the solution
of the boundary
value problem �
��� coincides with the solution of the initial
value problem �
�
��

����� Di	erential sweep method

The di�erential sweep method is developed by A� A� Abramov for linear prob

lems� We consider it for the second order boundary
value problem� Rewrite
the di�erential equation in the form of the system�

y�� � a��y� � a��y� � f��
y�� � a��y� � a��y� � f��

�
���

Here A � faijgi�j���� is a given matrix
function and F � �f�� f��T is a given
vector
function �symbol T denotes transposition��

Rewrite the boundary conditions in the form�
b��y��a� � b��y��a� � g��
b��y��b� � b��y��b� � g��

�
���

The main idea of the method is in converting the �rst condition in �
���
into some condition for the values of the unknown functions at the point
x � b� Then the values y��b� and y��b� can be obtained from this new
condition and the second condition in �
���� This reduces the problem to a
Cauchy problem which should be solved in inverse direction from x � b to
x � a�

Let us write a relation

u�x�y�x� � z�x�� �
���

Here functions u � �u�� u�� and z�x� are arbitrary at this step� Let u��a� �
b��	 u��a� � b��	 z�a� � g�	 then relation �
��� for x � a coincides with the
�rst boundary condition in �
����

Our goal is to �nd such functions u�	 u� and z that the relation �
��� is
satis�ed for arbitrary x� Di�erentiating relation �
��� and using the di�eren

tial equation �
���	 one gets�

u� � uA
�
y � z� � uf �
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If one requires the identities

u� � uA �
���

and

z� � uf �
���

to be satis�ed	 then relation �
��� is satis�ed on the entire interval a � x � b
for any vector
function y which satis�es the di�erential equation �
��� and
the boundary condition at the point x � a�

In this way	 solving the Cauchy problems for equations �
��� and �
���
and �nding the values u�b� and z�b�	 one gets the relation for y��b� and y��b��
Combining it with the second boundary condition	 yields the system�

u��b�y��b� � u��b�y��b� � z�b��
b��y��b� � b��y��b� � g��

�
����

This gives the Cauchy problem for di�erential equation �
����
In practice the use of the described above scheme meets di�culties orig


inated by round
o� error accumulation resulting in ill conditioned relations
�
��� especially in the case when solutions rapidly increase� This defect is
avoided in the following modi�cation� The vector function u is represented
in the form of the product

u � Qv�

The function Q�x� is assumed to be equal to a unity at the point x � a� By
di�erentiating �
��� one gets

v� � Sv� vA � ��

where
S � Q��Q�

Now the function Q can be chosen such that the norm of the vector v remains
constant� If

S �
�

vvT
vAvT� �
����

then �
vvT

��
� v�vT � v

�
vT
��

�
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� SvvT � vAvT � vvTST � vATvT � ��

Addressing to �
���� one �nally gets for v�x�

v� � vA� �

vvT
vAvTv� �
����

Now the equation for the right
hand side of the relation

v�x�y�x� � h�x� �
��
�

can be derived� Di�erentiating and replacing the derivatives of v and y with
the help of �
��� and �
����	 it is easy to get the di�erential equation

h� �
�

vvT
vAvTh � vf �
����

for h�x��

Comparative to equations �
��� and �
���	 equations �
���� and �
����
appear superior for numerical realization of the di�erential sweep method�

Note that the idea of di�erential sweep method can be also applied to the
boundary
value problems for systems of larger dimension�

��� Finite di	erence methods

For the numerical solution of a Cauchy problem	 the di�erential equation is
replaced by a set of computational formulae for step by step calculation of
the values y�	 y�	 � � � 	 yN � Finite di�erence methods for the boundary
value
problem �
��� are based on the idea to consider these computational formulae
as the system of equations for the unknown values of the function y�x� at the
nodes� Compared to Cauchy problems	 when the step can be chosen adapted
for achieving the required accuracy	 in �nite di�erence methods the mesh
fxigNi�� should be chosen in advance� We consider only equidistant meshes
with a step h�

Besides the accuracy those systems are preferred which can be easily
solved	 for example systems with three
diagonal matrices�
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����� Simple 
nite di	erence method

In the simplest �nite di�erence method the derivatives in the di�erential
equation are replaced with �nite di�erence approximations

y���xk� �
yk�� � �yk � yk��

h�
�O�h��� �
����

y��xk� �
yk�� � yk��

�h
�O�h��� �
����

This yields

yk�� � �yk � yk��
h�

� p�xk�
yk�� � yk��

�h
� q�xk�yk � f�xk� �O�h��� �
����

Equations �
���� can be written for k � �� �� � � � � N��� Two more equations
are taken from the boundary conditions�

Note that equations �
���� have the accuracy of order O�h��� If the
boundary conditions contain derivatives y��a� and�or y��b� then	 since one
can not use symmetric approximations �
���� for the derivatives	 simple �nite
di�erence approximations

y��a� �
y� � y�

h
�O�h�� y��b� �

yN � yN��
h

�O�h�

reduce the accuracy by one order� To write the approximations of order
O�h�� one needs to use the di�erential equation� For example	 in order to
get the desired approximation for y��a� one writes Taylor series

y�a� h� � y�a� � y��a�h�
�

�
y���a�h� �O�h��

and substitutes the second derivative y���a� from the di�erential equation

y�a� h� � y�a�

�
� � �

�
q�a�h�

	
� y��a�h

�
� � �

�
p�a�

	
�

�

�
f�a�h� �O�h���

Taking into account that y�a� � y� and y�a� h� � y� one �nds

y��a� �
y� � y�



�� �

�q�a�h
�
�� �

�f�a�h
�

h


�� �

�p�a�h
� �O�h�� �

�
y� � y�

h

�
� �

p�a�h

�
�
p�a��h�

�

	
� y�

�q�a�h

�
� f�a�h

�
�O�h��� �
����

The similar approximation can be derived for the derivative y��b��
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����� Numerov method

Compared to simple �nite di�erence method	 Numerov method allows the
accuracy of the scheme to be increased by two orders� For that the di�erential
equation should be rewritten in the form without the �rst order derivative

y���x� � q�x�y�x� � f�x�� �
����

Let the boundary conditions

y�a� � ya� y�b� � yb

be given�
One can write analogously to �
����

y�
��xk� �
y���xk���� �y���xk� � y���xk���

h�
�O�h���

Substituting the approximations for the �
th order derivatives in the two
Taylor formulae

y�xk��� � yk 	 y��xk�h�
�

�
y���yk�h� 	 �

�
y����xk�h� �

�

��
y�
��xk�h


	

	 �

���
y�	��xk�h

	 �O�h��

and summation term by term yields

yk�� � yk�� � �yk �
h�

��
y���xk��� �

�

�
h�y���xk� �

h�

��
y���xk��� �O�h���

Now it is possible to exclude the second order derivatives with the help of the
di�erential equation� Simple manipulations result in the di�erence equation�

� �
�

��
h�qk��

	
yk�� �

�
� � �

�
h�qk

	
yk �

�
� �

�

��
h�qk��

	
yk�� �

�
�

��
fk�� �

�

�
fk �

�

��
fk�� �O�h�� �
����

of Numerov method�
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The matrices of the simple �nite di�erence method and of Numerov
method are three
diagonal and the systems can be solved with sweep method�
One can prove that for q�x� � � these systems are nondegenerate for any
step h�

Numerovmethod can be also applied to a wider class of equations� Namely
the right
hand side in �
���� can be dependent of y	 that is the equation can
be nonlinear �quasi
linear��

It is worth noting that further increase of accuracy of the �nite di�erence
scheme requires either to increase the number of diagonals in the matrix	 or
to involve derivatives of functions p�x� and f�x��

��� Spline�collocation method

In some cases it is insu�cient to �nd only the values of the unknown function
at the nodes� Then one can interpolate the data fxk� ykg obtained by a
�nite di�erence method� The spline
collocation method combines the process
of data computation and the process of cubic spline interpolation in one
procedure�

Consider the problem ��
�

y�� � qy � f�
y�a� � A�
y�b� � B�

Let � � fxigNi��	 a � x� � x� � � � � � xN � b be an arbitrary mesh�
We shall search the approximation of the solution in the form of a spline
S 
 S�

����� The dimension of the space of cubic splines S�
���� is equal to

N � 
� That means to de�ne a spline one needs N � 
 conditions to be set�
Two of these conditions are the boundary conditions	 the rest appear from
the requirement that the di�erential equation is satis�ed at a set of points
x � �k	 which are called the collocation points	 that is

S����k� � q��k�S��k� � f��k�� k � �� �� � � � � N� �
����

Note that it is not possible to choose the collocation point arbitrary� In
particular it is not allowed to have more than 
 collocation points on an
interval �i � �xi� xi���	 because otherwise the spline on this interval will be
completely de�ned by the data at these points	 that is it will not depend on
the boundary conditions� It is also evident that one can not take collocation
points at jumps of the functions p�x� and f�x� if any exist�
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Below we shall consider the case when collocation points coincide with
the nodes of the mesh	 that is �i � xi�

Let the following notations

S�xi� � ui� S���xi� � Mi

be introduced� If the values ui are known	 then the values Mi can be found
from the system of equations


iMi�� � �Mi � �iMi�� �
�

hi�� � hi

�
ui�� � ui

hi
� ui � ui��

hi��

	
� �
����

�here �i � hi��hi � hi���	 
i � hi����hi � hi���� which should be completed
with boundary conditions� After that the spline is given by the formulae

S�x� � ui�� � t� � ui��t� h�i
�
t��� t�

�
Mi��� t� � �� � t�Mi��

�
�
��
�

written in local variable t which on each interval is de�ned by the formula

t �
x� xi
hi

�

Using the di�erential equation which according to our requirements is sat

is�ed for the spline S�x� at the nodes	 the values Mi can be excluded from
system �
����� Multiplying by �

�
hi��hi	 one �nds

�i

�
� �

h�i��
�

qi��

	
ui�� �

�
� � hihi��



qi

	
ui � 
i

�
� �

h�i
�
qi��

	
ui�� �

�
hi��hi

�
�
ifi�� � �fi � �ifi��� � �
����

Together with the boundary conditions u� � A	 uN � B system �
���� allows
the values ui and further the spline itself to be found�

Note that for q � � by choosing the steps hi satisfying

h�i�� max��qi����qi� � � �
����

the system with diagonal predominance appears� The error estimate is given
by the theorem
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Theorem � Let q�x� � Q � � and the inequalities ������ are satis�ed	 then
for the solution y�x� from C���a� b�� the error is estimated as follows

max
x��a�b


jS�x�� y�x�j � O

�
max
i���N

h�i

	
�

Proof
Let us introduce the spline $S�x� interpolating the table of values of the
exact solution y�x� at the nodes of the mesh � and satisfying the conditions
$S��a� � y��a�	 $S��b� � y��b�� It is known that the interpolation error is of
order O�h
�� Therefore

jS�x�� y�x�j � jS�x�� $S�x�j� j $S�x�� y�x�j � jS�x�� $S�x�j� O�h
��
�
����

The S�x� and $S�x� are constructed by the explicit formulae that di�er only
in the replacement of ui by yi and Mi by $S���xi�� From these formulae it is
easy to derive the estimate

jS�x�� $S�x�j � max
i���N

jui � yij� h�

�
max
i���N

jMi � $S���xi�j� �
����

Noting that the second derivative is approximated by the spline with the
error of order O�h�� one concludes that the spline $S satis�es the di�erential
equation with the error of order O�h��	 that is

$S���xi� � qi $S�xi� � fi �O�h��� �
����

Then
jMi � $S���xi�j � qijui � yij�O�h���

Substituting this estimate into �
���� yields

jS�x�� $S�x�j �
�
� �

h�

�
max
x��a�b


q

	
max
i���N

jui � yij�O�h
�� �
����

Hence	 to prove the theorem it is needed to derive the estimate for the
di�erence ui � yi� For this purpose the system �
���� is rewritten in matrix
form

Au � d�
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Replacing equations �
���� by �
���� one can analogously get for y � �y�� y�� � � � � yN �T

the system of equations
Ay � d � ��

where � � O�h
�� For the di�erence ui � yi this yields

A�ui � yi� � ��

For the systems with diagonal predominance the solution is estimated as

max
i���N

jui � yij � max
i���N

j�ij
ri
�

where ri is the diagonal predominance factor for the i
th row� In the case of
system �
���� these factors are

ri � � � hihi��



qi � �i

�
� �

h�i��
�

qi��

	
� 
i

�
� �

h�i
�
qi��

	
�

� �hihi��



qi � �i
h�i��
�

qi�� � 
i
h�i
�
qi�� � �hihi��

�
Q�

Therefore	 jui�yij � O�h��	 which together with �
���� and �
���� concludes
the proof�

Note that the restriction q�x� � Q � � can be weakened to q�x� � ��
It is often possible to exclude condition �
����	 in particular the diagonal
predominance takes place for any mesh if q�x� � const�

��� The method of moments

In the above discussed methods the di�erential equation was replaced by a
set of conditions meaning that it is satis�ed at a set of points called the
collocation points� However this is not the only method of passing from an
equation satis�ed on an interval to a �nite set of equations� Let u�x� be
an approximate solution of the boundary
value problem �
���� Consider the
residual

ru�x� � u���x� � p�x�u��x� � q�x�u�x�� f�x��

If the solution is exact	 then the residual is identically zero

ry � y���x� � p�x�y��x� � q�x�y�x�� f�x� � � �
�
��
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In the method of moments the condition r�x� � � is replaced by the require

ments that the projections of the residual on a given set of functions �j�x�
is equal to zero	 that is

bZ
a

ru�x��j�x� dx � �� �
�
��

Note that if the functions �j�x� constitute a basis in L���a� b��	 then con

ditions �
�
�� for j � �� �� � � � � J mean that the �rst J coe�cients in the
decomposition of the residual r�x� in the basis �j�x� are equal to zero�

Consider the method of moments in more details� Let us �rst exclude the
right
hand sides in the boundary conditions	 that is transform the boundary

value problem �
��� to the similar problem with the homogeneous boundary
conditions� This can be done by subtracting a function that satis�es to the
boundary conditions in �
���	 but does not satisfy the di�erential equation�
Let

y�x� � y��x� � U�x��

where y��x� satis�es �
��y��a� � ��y

�
��a� � A�

��y��b� � ��y
�
��b� � B�

Then the function U�x� should be the solution of the problem��
�

U ���x� � p�x�U ��x� � q�x�U�x� � g�x��
��U�a� � ��U

��a� � ��
��U�b� � ��U

��b� � ��
�
�
��

where

g�x� � f�x�� �y����x� � p�x�y���x� � q�x�y��x�� �

Consider a system of su�ciently smooth functions �k�x�	 k � �� �� � � � �
Let these functions satisfy the boundary conditions from �
�
��� Then any
linear combination of these functions

uN�x� �

NX
k��

Ck�k�x�� �
�

�
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also satis�es the boundary conditions of the problem �
�
��� Let the solu

tion be searched in the form of such a combination� In order the functions
uN �x� can approach the solution U�x� when N �� one requires the system
f�k�x�g to be complete� �Actually it is su�cient to require that only the
solution U�x� can be decomposed by the system f�k�x�g��

Let the coe�cients Ck of decomposition �
�

� be chosen so that condi

tions �
�
�� are satis�ed� Using the expressions for the residual these condi

tions can be written in the form of the linear system

NX
k��

CkAjk � Bj � j � �� �� 
� � � � � N�

Here

Ajk

bZ
a

�j�x� ��
��
k�x� � p�x���k�x� � q�x��k�x�� dx� Bj �

bZ
a

�j�x�g�x� dx�

The case with �j � �j is called Galerkin method�

��
 Variational methods

����� Least squares method

When using variational approach the boundary
value problem is replaced by
some minimization problem� Two main approaches are possible� the least
squares method being in the minimization of the residual norm jr�x�j	 and
Ritz method based on energetic ideas�

We start with a more universal least squares method� As in the method of
moments the problem is transformed to the case of homogeneous boundary
conditions and the solution is represented in the form �
�

�

uN�x� �
NX
k��

Ck�k�x��

The coe�cients Ck of this decomposition are found from the requirement
that the norm of the residual is minimal	 that is the minimum of

kru�x�k� �
bZ

a

jru�x�j�dx
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is searched� After substitution of representation �
�

� for u�x� we get the
function of the variables C�	 C�	 � � � 	 CN

F �C�� C�� � � � � CN� �

bZ
a

�����
�

NX
k��

CkL�k�x�

�
� g�x�

�����
�

dx� �
�
��

Here we denoted by L the di�erential operator in the equation	 that is L �
d��dx� � p�x�d�dx � q�x��

Thus the boundary
value problem for the di�erential equation is reduced
to minimizing the function �
�
��	 which can be done by standard methods
of minimization�

Note that the least squares method can be also applied to nonlinear prob

lems and moreover with some simple modi�cations to ill
posed problems�

In our case of linear di�erential equation the function F �C�� C��� � � � CN�
is quadratic and its minimization is reduced to solving the system of linear
equations


F


Ck
� �� k � �� �� � � � � N� �
�
��

Calculating the derivatives yields explicit form of system �
�
��X
j���N

AjkCj � bk� k � �� �� � � � � N�

where

Ajk � Re

�
� bZ

a

L�j�x� L�k�x� dx

�
A � bk � Re

�
� bZ

a

L�k�x� g�x� dx

�
A �

One can chose in particular the basic splines Bn
k �x� for the functions

�k�x�� Due to the �niteness property of basic splines this yields band
type
matrix Ajk� With the increase of the degree n of the spline the number of
nonzero diagonals increases� On the contrary if n decreases	 the number of
diagonals also decreases� However it is not possible to diminish the degree n
to zero because when computing the elementsAjk one needs to integrate the
second derivatives of Bn

k �x�� This is possible only if Bn
k 
 C���a� b�� which

means that n can not be less than two�
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The supports of splines B�
k�x� consist of three intervals of the mesh ��

Hence	 the matrix elements Akj with jj � kj � � are di�erent from zero and
the matrix of system �
�
�� has � nonzero diagonals� The use of basic splines
in the Ritz method allows three
diagonal system to be obtained�

����� Ritz method

Ritz method can be applied only to su�ciently  good! problems� Namely	 it
requires the operator L of the boundary
value problem to be positive	 that is
it should be symmetric and for any di�erentiable function u�x� that satis�es
the boundary conditions the scalar product

hu�Lui �
bZ

a

u�x�Lu�x� dx

be non
negative� For example the operator of the problem� Ly�x� � ��p�x�y��x��� � q�x�y�x� � f�x�� a � x � b�
y�a� � �� y�b� � ��

�
�
��

where p and q are positive
valued functions	 is positive� Indeed	 integrating
by parts yields

hu�Lui �
bZ

a

u�x� ���p�x�u��x��� � q�x�u�x��dx�

� � upu�jba �
bZ

a



p�x�ju��x�j� � q�x�ju�x�j�� dx�

The non
integral terms disappear due to the boundary condition and the
integral is non
negative because the functions p and q are positive
valued�

The following theorem is the cornerstone of Ritz method�

Theorem � The minimization problem for the functional

J�u� � hLu� ui � �hf� ui� �
�
��

on the set of functions that satisfy the boundary conditions is equivalent to
the boundary�value problem ����
��
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That means that the function which minimizes the functional J is the
solution of problem �
�
�� and vice a versa	 the solution of the problem
�
�
�� minimizes functional �
�
���

We shall prove the above theorem for a boundary value problem for a
general positive operator� Let the function u�x� satis�es the boundary con

ditions and minimizes the functional J � Let a di�erential function v�x� also
satisfy the boundary conditions and z be any number� Consider the di�erence

J�u� zv�� J�u� � z �hLu� vi� hLv� ui � �hf� vi� � z�hLv� vi� �
�
��

As u minimizes the functional on the set of di�erential functions satisfying
the boundary conditions and the function u�x� � zv�x� belongs to this set
for any z	 the inequality

J�u� zv� � J�u� �
�
��

holds� For su�ciently small jzj the �rst �linear in z� term evidently dominates
in �
�
��� Evidently if

hLu� vi� hLv� ui � �hf� vi �� ��

one can choose z of appropriate sign	 so that inequality �
�
�� is violated�
Therefore	

hLu� vi� hLv� ui � �hf� vi � �� �
����

Then
J�u� zv�� J�u� � z�hLv� vi � �

because the operator L is positive�
Now integrate by parts in the second term in �
����

hLv� ui � hv�Lui � hLu� vi�

Then equality �
���� can be written in the form

�hLu � f� vi � ��

This equality is satis�ed for any �admissible� function v	 which is possible
only if

Lu� f � ��
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which is equivalent to the equation in the boundary
value problem�
We showed that the function that minimizes the functional J satis�es the

boundary
value problem� Now we show the opposite	 that the solution of the
boundary
value problem minimizes the functional� Let u be the solution of
the boundary value problem� Consider any other di�erential function w that
satis�es the boundary conditions and calculate the di�erence

J�w��J�u� � �hLu�w � ui� hL�w � u�� ui � �hf�w � ui��hL�w�u�� w�ui�

Integrating by parts in the second term and taking into account that Lu � f 	
we see that the expression in brackets is equal to zero� Thus	

J�w�� J�u� � hL�w � u�� w � ui�

which is non
negative due to the positive property of the operator L� This
concludes the proof�

The main method of �nding the minimum of functional �
�
�� is the con

struction of minimization sequence �or Ritz sequence�� Assume an in�nite
set f�k�x�g�k�� of functions �k�x�	 that satisfy the boundary conditions	 are
su�ciently smooth for the application of the di�erential operator and all to

gether form a complete system� Then the minimization sequence fUn�x�g�n��

can be constructed in the form

Un�x� �
nX

k��

akn�k�x��

The coe�cients akn are chosen such that the value of functional �
�
�� on
every Un is minimal	 that is

J�Un� � min
akn

��
L

nX
k��

akn�k�x��

nX
k��

akn�k�x�

�
� �

�
f�

nX
k��

akn�k�x�

��
�

�
����

For every �xed n the function of variables akn that should be minimized is
quadratic

nX
k��

nX
j��

aknajnhL�k � �ji � �
nX

k��

aknhf� �ki� �
����
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Note that in the scalar product hL�k� �ji one can perform integration by
parts	 which in the case of problem �
�
�� gives

hL�k� �ji �
bZ

a



p�x���k�x��

�
j�x� � q�x��k�x��j�x�

�
dx � Akj�

This reduces the requirements of smoothness of the functions �k�x� to �k 

W �

� �p�	 whereW
�
� �p� is the space of functions that have generalized derivative

of the �rst order square
integrable on the interval �a� b� with the weight p�x��
The minimization problem �
���� can be reduced to the system of linear

equations

nX
j��

Akjajn � Bk� k � �� �� � � � � n� �
��
�

Here

Bk �

bZ
a

f�x��k�x� dx�

The system �
��
� is called Ritz system�
Compared to the least squares method one can use basic splines of the

�rst degree in Ritz method applied to the boundary
value problem �
�
���
This yields the system of equations with three
diagonal matrix�

��� Sturm�Liouville problem

Consider the following problem� ��p�x����x��� � q�x���x� � ���x�� a � x � b�
��a� � �� ��b� � �

�
����

for the parameter � and function ��x��
One can also take Neumann or mixed type boundary conditions�
The problem �
���� looks similar to a boundary
value problem	 but there

is an additional parameter �� If this parameter is given	 then one deals with
a homogeneous boundary
value problem for the function ��x�� Evidently
that ��x� � � solves that problem� However for some special values of
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the parameter �	 called eigen
values �k	 there exist nonzero solutions �k�x�	
called eigen
functions� Eigen
functions are de�ned up to a multiplier and
to reduce this arbitrariness one can pose a normalization for example in the
form

bZ
a

j��x�j�dx � �� �
����

�Then the eigenfunctions are de�ned up to a multiplier 	���
The problem of �nding eigen
numbers �k and eigen
functions �k�x� of

�
���� is called the Sturm�Liouville problem� A Sturm
Liouville problem may
appear as an independent problem or as a part of a more complicated one	
for example	 in variables separation method for partial di�erential equation�

There are several methods for solving Sturm
Liouville problem �
�����
Some of them are described below�

����� Shooting method

Similar to shooting method for boundary
value problems the main idea is
in transforming the problem to Cauchy problem� One can set the second
condition at the point x � a as

���a� � �

because the solution ��x� of the problem �
���� is de�ned up to a multiplier�
Then one gets the Cauchy problem� ��p�x����x��� � �q�x�� ����x� � �� a � x � b�

��a� � �� ���a� � �
�
����

for the function ��x�� Its solution for a given value of the spectral parameter
� can be obtained by any computational scheme of chapter �	 for example by
Runge
Kutta method� Then the problem is reduced to solving the equation

��b� �� � � �
����

with respect to ��
Equation �
���� has in�nite set of solutions and if one needs to �nd all

eigen
values of problem �
���� on a given interval	 two problems may appear�
Firstly	 one needs to separate the solutions and secondly	 one needs to check
that no solution is missed� To overcome these di�culties an analytic analysis
of a particular problem or some physical considerations can be useful�
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����� Finite di	erence method

Application of �nite di�erence approximation of the di�erential operators in
the di�erential equation yields spectral problems of linear algebra� If equation
�
���� is transformed to

y���x� � P �x�y��x� � �Q�x�� �� y�x� � ��

then the algebraic system of the simple �nite di�erence method can be easily
derived from equations �
����	 if one takes f�xk� � �	 p�xk� � P �xk� and
q�xk� � Q�xk�� �� Then one gets the spectral problem for the matrix�
BBBBBBB�

� �
h�

�Q�x��
�
h�
� P �x��

h
� � � � �

�
h�

� P �x��
h

� �
h�

�Q�x��
�
h�
� P �x��

h
� � � �

� � � � � � � � � � � � � � �

� � � �
h�

� P �xk�
h

� �
h�

�Q�xk�
�
h�
� P �xk�

h
� � �

� � � � � � � � � � � � � � �

� � � � � � � �
h�

� P �xN���
h

� �
h�

�Q�xN���

�
CCCCCCCA
�

To use Numerovmethod	 one transforms the equation to the form without
the �rst order derivative	 that is

y���x� � �Q�x�� �� y�x� � ��

Then replacing q in equations �
���� by Q � � yields the spectral problem
for the pencil

A � �B�

where A and B are three
diagonal matrices with the elements

akk � �� �
�

�
h�Q�xk�� ak��k � � �

h�Q�xk���
��

� ak��
k � � �

h�Q�xk���

��
�

bkk �
�

�
� bk��k � bk��

k �
�

��
�

The eigen
numbers of these spectral problems approximate the �rst eigen

numbers of Sturm
Liouville problem�

����� Variational methods

The idea of variational methods �least squares method and Ritz method� is
similar to that described in the case of boundary
value problems and leads
to spectral problems of linear algebra�



�� CHAPTER �� BOUNDARY�VALUE PROBLEMS

����� The abstract Newton method

When solving the Sturm
Liouville problem by the methods described above
the problem is reduced to spectral problem of linear algebra and then this
problem is solved by the corresponding methods of linear algebra� Another
approach is also possible� The abstract �or operator� Newton method reduces
the Sturm
Liouville problem to a sequence of boundary
value problems�

Consider the abstract Newton method �rst in the general form� Suppose
the nonlinear operator equation

F�x� � y �
����

should be solved� Here F is the operator acting from a linear space X to the
linear space Y de�ned on some domain D�F�� The element y 
 Y is given	
the element x 
 D�F� should be found�

In the simplest case when X � Y � R	 equation �
���� is a nonlinear
algebraic equation and its solution can be found by the usual Newton method
as the limit of the following iterations

xk�� � xk � F�xk�

F ��xk�
� �
����

where F � is the derivative of the function F �
In a little more complicated case when X � Y � Rn	 equation �
����

represents the system����
���

f��x� � y��
f��x� � y��
� � �
fn�x� � yn�

or f�x� � y�

Here x � �x�� x�� � � � � xn�T � The Newton method in that case is in the
iterative process

xk�� � xk � J���xk�f�xk��

where J�x� is the Jacobi matrix

J�x� �

�
BBBB�

�f��x�
�x�

�f��x�
�x�

� � � �f��x�
�xn

�f��x�
�x�

�f��x�
�x�

� � � �f��x�
�xn

���
���

� � �
���

�fn�x�
�x�

�fn�x�
�x�

� � � �fn�x�
�xn

�
CCCCA �
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In the abstract case the iterations are given by the formulae

xk�� � xk � �B�xk����F�xk�

or

B�xk� �xk�� � xk� � �F�xk� �
����

where the operator B�x� is the operator
derivative of F on the element x�
The operator F is di�erentiable on the element x if there exists a linear
operator B�x� acting from the space X to the space Y 	 such that for any
element z 
 X

kF�x� z��F�x�� B�x�zk
kzk ��

kzk��
��

Let us now turn back to Sturm
Liouville problem �
����� The unknowns
are the eigen
value � and the eigen
function ��x� corresponding to that eigen

value� Let x consist of these unknowns

x �

�
��x�
�

	
�

The problem �
���� in the space of square
integrable functions �� 
 L���a� b���
is self
adjoint and its eigen
values belong to the real space R� Thus	 the
elements x belong to the space being the product of L���a� b�� and R	

X � L���a� b���R�

Let the operator F be de�ned on such elements x that have twice di�eren

tiable �rst component vanishing at the end points of the interval �a� b�� Let
the action of the operator be de�ned by the formula

F�x� �

�
� ��p�x����x��� � q�x���x�� ���x�

bR
a

j��x�j�dx� �

�
A �

The de�ned above operator F is not linear	 it acts in the space X	 that is
Y � X�

Consider the problem

F�x� � �� �
����
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The equation in the �rst component of �
���� coincides with the di�eren

tial equation of �
����� The boundary conditions are taken into account by
the domain of the operator F � The equation in the second component of
�
���� is the normalization condition �
����� Therefore the operator equation
�
���� is equivalent to Sturm
Liouville problem �
���� with the normalization
condition for the eigen
functions�

To perform the iterations by formula �
���� one needs to de�ne the oper

ator derivative of F � For that consider the element F�x� z�

F�x� z� �

�
� � �p ��� � � ���� � q �� � �� � �� � 
��� � ��

bR
a

���x� � ��x��� dx� �

�
A �

Here

z �

�
��x�



	
�

Neglecting quadratic in z terms gives

F�x� z� � F�x� �

�
� � �p�x�� ��x��� � �q�x�� �� ��x�� 
��x�

�
bR
a

��x���x�dx

�
A�O�kzk���

�
����

The second term in �
���� gives the expressions for B�x�z	 where B�x� is the
operator derivative of F on the element x�

Thus	 at every step of the iterative procedure one needs to solve the
following linear problems����

���
��p� �k�

� � �q � �k��k � 
k�k � �p��k�
� � �q � �k��k�

��a� � ��b� � ��

�
bR
a

�k�x��k�x�dx � � � k�kk�
�
��
�

for zk � ��k�x�� 
k�T 	 and then set

xk�� � xk � zk or

�
�k���x�
�k��

	
�

�
�k�x�
�k

	
�

�
�k�x�

k

	
�

Problem �
��
� can be reduced to two usual boundary
value problems	 namely
let the functions ��x� and ��x� be solutions of the following boundary
value
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problems � ��p��k�
� � �q � �k��k � �p��k�

� � �q � �k��k�
�k�a� � �k�b� � ��

�
����

and � ��p��k�
� � �q � �k��k � �k�

�k�a� � �k�b� � ��

Then the function �k�x� � �k�x� � 
k�k�x� satis�es the di�erential equation
in �
��
� and the boundary conditions for any value of 
k� The required value
of 
k can be found from the second equation in �
��
�


k �

��
bR
a

�
��
k�x� � ��k�x��k�x�

�
dx

�
bR
a

�k�x��k�x�dx

� �
����

Thus	 the operator Newton method reduces the Sturm
Liouville problem
to a sequence of boundary
value problems� The convergence of the process
is quadratic as in the usual Newton method� However one needs a good
initial approximation� To make the method more robust the right
hand side
of �
���� is sometimes multiplied by factor t	 � � t � �� The additional
instability arises when you are searching several eigenvalues and the process
converges to already known solution� Suppose that eigen value ���� and eigen
function �����x� are known and we a searching for � � ����	 ��x� � �����x��
To avoid convergence of iterations to ����	 �����x� one can modify the process
by adding the orthogonality condition

bZ
a

��x������x�dx � ��

which	 in fact	 is the property of the eigen functions of Sturm%Liouville prob

lem�

Minimization of the functional constructed accoding to the method of
Lagrange multipliers

I��� �

bZ
a

�
p�x� ����x��� � �q�x�� ��y��x�

�
dx� ��

bZ
a

��x������x�dx�
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yields the problem

������������
�����������

� �p���� � �q�x�� ����x� � ������x� � ��
��a� � �� ��b� � ��
bZ

a

j��x�j� dx� � � ��

bZ
a

��x������x�dx � ��

Then besides �k�x� and �k�x� each step of iterations requires �nding solution
�k�x� of the boundary value problem

� ��p��k�
� � �q � �k��k � �����

�k�a� � �k�b� � ��

After that new approximation is computed as

xk�� �

��
�k���x�
�k��

		
�

��
�k�x� � �k�x� � 
k�k�x�� �k�k�x�

�k � 
k

		
�

where coe�cients 
k and �k are solutions of the system that appears as
linearization of normalization and orthogonality conditions

��������������������
�������������������


k

bZ
a

�k�x��
����x�dx � �k

bZ
a

�k�x��
����x�dx �

� �
bZ

a

�
�k�x� � �k�x�

�
�����x�dx�


k

bZ
a

�k�x��k�x�dx � �k

bZ
a

�k�x��k�x�dx �

�
�

�
� �

�

bZ
a

�
�k�x� � ��k

�
�k�x�dx�
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��� Some generalizations

In this chapter we have considered spectral problems for the second order
linear di�erential equations� All the methods described in this chapter allow
generalizations to higher order equations and also to nonlinear problems� The
compli�cations are in the increase of dimension of the system of algebraic
equations to which the problem is reduced by this or that method� In the
case of nonlinear problems these algebraic systems will be nonlinear and their
solution may be a complicated problem� If the problem is almost linear	 then
no di�culties usually appear	 but if the problem is strongly nonlinear	 then
the iterative process may diverge�

For strongly nonlinear problems one may pass to a parametric set of
problems� We illustrate this method taking as an example the boundary

value problem consisting of the system of di�erential equations

z��x� � f
�
x� z�x�

�
�
����

and the system of boundary conditions

h
�
z��a�� z��a�� � � � � zn�a�� z��b�� z��b�� � � � � zn�b�

�
� �� �
����

Let us introduce a p and de�ne functions F�x� z� p� and H �z�a�� z�b�� p�	 such
that F�x� z� �� � f�x� z� and H �z�a�� z�b�� �� � h �z�a�� z�b��	 and for p � �
the problem��

�
Z��x� � F

�
x� z�x�� p

�
�

H
�
Z��a�� Z��a�� � � � � Zn�a�� Z��b�� Z��b�� � � � � Zn�b�� p

�
� �

�
����

is simple�
Then computing the solution of problem �
���� for p � � one gets the

vector
function Z�x� ��� This vector
function can be used as the initial ap

proximation for problem �
���� with some �xed su�ciently small parameter
p � p�� Again	 computing the solution of this problem Z�x� p�� one can use
it as the initial approximation to the solution corresponding to a bit larger
parameter p � p�� Repeating the process and increasing the parameter p to
p � � one �nds the solution of the boundary
value problem �
����	 �
�����
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Chapter �

Numerical methods for integral

equations

��� Types of integral equations

The integral equation is the equation that contains the unknown function
under the integration sign� We restrict ourselves to equations for the un

knowns depending on one scalar argument and the integration is carried out
along an interval on the real axis� A large class of one
dimensional integral
equations can be presented in the form

y�x� �

bZ
a

K �x� t� y�t��dt� a � x � b� �����

Here K�x� t� z� is a given function �the kernel�	 and the function y�x� is the
unknown� The equation of the form ����� are called Uryson equations�

If the kernel K is such that K�x� t� z� does not depend on z for t 	 x
equation ����� can be rewritten in the form

y�x� �

xZ
a

K �x� t� y�t��dt� f�x�� �����

where

f�x� �

bZ
x

K�x� t� ��dt�

��
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In this case the values of the function y�x� depend only on its values y�t�
for t � x� Such equations are called Volterra equations of the second kind�
Cauchy problems for di�erential equations can be reduced to such equations�
Let for example the di�erential equation takes the form

y��x� � f�x� y�x���

Integrating reduces it to the equation

y�x� � y�a� �

xZ
a

f�t� y�t�� dt�

which is a particular case of ������

Linear integral equations are mostly studied� The equations of the form

y�x� �

bZ
a

K�x� t�y�t�dt � f�x� ���
�

with bounded �or weakly singular� kernel K�x� t� are called Fredholm equa�
tions of the second kind�

In the case when the �rst term is absent

bZ
a

K�x� t�y�t�dt � f�x�

one deals with Fredholm equation of the �rst kind which is an ill
posed prob

lem and requires regularization�

One can also formulate a spectral problem for the second kind Fredholm
equations

bZ
a

K�x� t�y�t�dt � �y�x��

being in �nding such values of the spectral parameter �	 for which nontrivial
solution y�x� exists� Some kind of normalization condition is required to
determine y�x� uniquely�
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Special type kernels of Fredholm integral equations that can be repre

sented in the form

K�x� t� �
MX
j��

aj�x�bj�t��

are called degenerate kernels� Integral equations with degenerate kernels are
equivalent to systems of M linear algebraic equations �we suppose that the
functions aj and bj are known�� Indeed	 substituting the expression for the
degenerate kernel into the integral equation ���
� and changing the order of
integration and summation reduces the equation to

y�x� �

MX
j��

Bjaj�x� � f�x�� Bj �

bZ
a

bj�t�y�t� dt�

Thus the solution y�x� can be represented in the form of the decomposition

y�x� � f�x��
MX
k��

Bkak�x��

Substituting this decomposition into the expression for Bj	 yields the system
of algebraic equations

Bj �
MX
k��

Bk

bZ
a

bj�t�bk�t� dt �

bZ
a

bj�t�f�t� dt� j � �� �� � � � �M� �����

System ����� is equivalent to the integral equation with degenerate kernel�

��� Method of iterations

Consider equation ������ The kernel K�x� t� z� may weakly depend on the
third argument	 in a way that the inequality������

bZ
a

�K�x� t� z��t���K�x� t� z��t���dt

������ � Ckz��t�� z��t�k �����
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holds with C � �� In this case one can apply the method of simple itera

tions to the integral equation ������ This results in the following recurrent
computations

y��x� � �� yk�x� �

bZ
a

K�x� t� yk���t��dt� k � �� �� � � �

The sequence of functions yk�x� converges to the solution y�x� of the integral
equation ����� under the supposition that condition ����� holds� Indeed	
consider the di�erence yk�x� � y�x�� Substituting here the expression for
yk�x� and taking into account that y�x� satis�es to the integral equation	
one gets

yk�x�� y�x� �

bZ
a

�K�x� t� yk���t���K�x� t� y�t���dt�

Due to the inequality ����� the norm satisfyes

kyk�x�� y�x�k � Ckyk���x�� y�x�k�
Repeating the same estimates for yk��	 yk�� � � � 	 one �nally �nds

kyk�x�� y�x�k � Ckky�x�k�
At C � � the sequence yk�x� converges to y�x��

For Volterra equations the sequence yk�x� converges under the following
weaker condition

jK�x� t� z���K�x� t� z��j � Cjz� � z�j� �����

where C is any �nite constant� Similarly to the above	 consider the di�erence
yk�x�� y�x� and with the use of recurrent rule get

jyk�x�� y�x�j �
������

xZ
a

�K�x� t� yk���t���K�x� t� y�t���dt

������ �
Now we use the fact that the absolute value of the integral is not greater
than the integral of the absolute value and apply estimate ������ This gives
the estimate

jyk�x�� y�x�j � C

xZ
a

jyk���t�� y�t�jdt�
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Using the recurrent formula once again yields

jyk�x�� y�x�j � C�

xZ
a

tZ
a

jyk���s�� y�s�j ds dt�

Changing the order of integration and computing the integral by t one �nds

jyk�x�� y�x�j � C�

xZ
a

�x� s� jyk���s�� y�s�j ds

Repeating the similar derivations one gets

jyk�x�� y�x�j � C�

xZ
a

�x� s��

�
jyk���s�� y�s�jds

� C


xZ
a

�x� s��

�
jyk�
�s�� y�s�jds

� � � � � � � � � � � � � � � � � � � � � � � � � � � �

� Ck

xZ
a

�x� s�k��

�k � ���
jy�s�j ds�

The last inequality states that with the increase of k the error jyk�x�� y�x�j
tends to zero not slower than

C
Ck���x� a�k��

�k � ���
�

Thus the sequence yk converges to the solution exponentially�

Note that condition ����� is satis�ed for any linear integral equations with
bounded kernel� Also it holds for integral equations with kernels di�erentiable
by the third argument and having bounded derivative�

For the equations other than Volterra equations the kernel should be small
for the convergence of the method� If condition ����� is not satis�ed	 other
methods are used�
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��� Method of quadrature formulae

In the method of quadrature formulae the unknown function is replaced by
a table of its values at a set of points which simultaneously play the role of
the nodes of integration� If the function y�x� is known then the integral in
the right
hand side of ����� can be computed with the help of a quadrature
formula� In the general form the quadrature formula can be presented as
follows

bZ
a

f�t�dt �
NX
j��

wjf�xj�� �����

Here wj are the weights and xj are the nodes� Using formula ����� one can
replace the integral in the right
hand side of ����� with quadrature sum

y�x� �

NX
j��

wjK �x� xj� y�xj�� �

Now if only the values in the nodes are taken into account	 that is the above
equation is taken only for x � xk	 then the approximations yj for the values
y�xj� can be found from the system��������������

�������������

y� �
NX
j��

wjK �x�� xj� yj� �

y� �
NX
j��

wjK �x�� xj� yj� �

� � � � � � � � � � � � � � � � � � � � � � � � � � �

yN �

NX
j��

wjK �xN � xj� yj� �

��� Collocation method

We shall consider only linear equations ���
�� In collocation method as well
as in Bubnov
Galerkin method	 discussed in the next section	 the unknown
function is searched in the form of the decomposition in a system of some
functions �j�x�� This system should satisfy the following criteria�
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�� functions �j�x� should be integrable	

�� for any �nite N the functions ���x�	 ���x�	 � � � 	 �N�x� should be linear
independent	


� any function can be approximated by the functions �j�x� with arbitrary
small error	 that is the system f�j�x�g should be complete�

Let us choose a �nite number N and search for the solution y�x� in the
form

y�x� �
NX
j��

cj�j�x� �����

with yet unknown coe�cients cj� Substituting representation ����� into inte

gral equation ���
� yields

NX
j��

cj

�
��j�x� �

bZ
a

K�x� t��j�t� dt

�
A � f�x�� �����

The integral equation and consequently the above equality should be satis�ed
for all values x from the interval �a� b�� Evidently that with the choice of the
�nite set of parameters cj this can not be achieved in the general case� In
the collocation method one requires equalities ����� to be satis�ed at a set
of preliminary chosen points xk	 which are called the collocation points� In
total these equalities form the system of linear algebraic equations����������������

���������������

NX
j��

cj

�
��j�x�� �

bZ
a

K�x�� t��j�t� dt

�
A � f�x���

NX
j��

cj

�
��j�x�� �

bZ
a

K�x�� t��j�t� dt

�
A � f�x���

� � � � � � � � � � � � � � � � � � � � � � � � � � �

NX
j��

cj

�
��j�xM� �

bZ
a

K�xM � t��j�t� dt

�
A � f�xM��

For the solvability and uniqueness it is needed that the number of collocation
points coincides with the number of unknown coe�cients in decomposition
������ Due to the conditions posed on the functions �j�x� this is also su�

cient�
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��� Bubnov�Galerkin method

Two systems of functions f�j�x�g and �k�x� are used in Bubnov
Galerkin
method� The �rst is called the coordinate system and is used in representa

tion ����� for the solution similarly to collocation method� The other is used
to project the residual

r�x� �

NX
j��

cj

�
��j�x� �

bZ
a

K�x� t��j�t� dt

�
A� f�x�

of equation ������ That is the system for the coe�cients cj is found from the
requirement that the residual r�x� is orthogonal to the �rst N functions of
the system f�k�x�g� The system f�k�x�g should be also linearly independent
and complete� The system of equations takes the form

NX
j��

cjAjk � Bk� k � �� �� � � � � N�

where

Ajk �

bZ
a

bZ
a

K�x� t��j�t��k�x� dt dx� Bk �

bZ
a

f�x��k�x� dx�

Note that the matrix of that system is more complicated than in collocation
methods and in the method of quadrature formulae� However	 if the systems
f�j�x�g and f�k�x�g are appropriately chosen	 the system that should be
solved to get the solution with a given accuracy appears of less size than in
the other methods�

Indeed	 let the kernel K�x� t� in ���
� be represented in the form of a
converging series

K�x� t� �
�X
j��

aj�x�bj�t�� ������

Extracting a �nite sum one can get the representation of the kernel in the
form of the sum of the degenerate kernel K��x� t� and the remaining series
K��x� t�	 that is

K�x� t� � K��x� t� �K��x� t��
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where

K��x� t� �
MX
j��

aj�x�bj�t�� K��x� t� �
�X

j�M��

aj�x�bj�t��

For su�ciently large M the kernel K��x� t� will be small due to the conver

gence of the series �������

If one neglects the correction K��x� t� to the kernel	 then the integral
equation is replaced by the integral equation with degenerate kernel which is
equivalent to a system of algebraic equations ������ Let the solution of this
system be written as

Bj �
MX
k��

Ajk

bZ
a

bj�t�f�t� dt� ������

If one does not neglect the correction	 then the solution can be searched
in the form

y�x� � y����x� � y����x�� ������

where

y����x� � f�x��
MX
j��

Bjaj�x��

and y����x� is some reminder� Temporally assume the function y����x� to be
known� Then	 substitution of representation ������ into the integral in ���
�
yields

y����x� � y����x� � f�x��
MX
j��

Bjaj�x��
bZ

a

K��x� t�


y����t� � y����t�

�
dt�

����
�

where

Bj �

bZ
a

bj�t�


y����t� � y����t�

�
dt�
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After substituting the expression for y����x� one gets the system for the co

e�cients Bj

Bj �
MX
k��

Bk

bZ
a

bj�t�ak�t� dt �

bZ
a

bj�t�f�t� dt�

bZ
a

bj�t�y
����t� dt�

Represent the solution of that system in the form similar to ������	 namely

Bj �
MX
k��

Ajk

�
� bZ

a

bk�s�f�s� ds�

bZ
a

bk�s�y
����s� ds

�
A �

Now substitute the above expressions into equation ����
� and obtain

y����x� �

bZ
a

K��x� t�

�
f�t��

MX
j��

Bjaj�t� � y����t�

�
dt

� F �x� �

bZ
a

$K�x� t�y����t� dt� ������

where

F �x� �

bZ
a

K��x� t�f�t� dt�
MX
j��

bZ
a

K��x� t�aj�t� dt
MX
k��

Ajk

bZ
a

bk�s�f�s� ds�

$K�x� t� � K��x� t��
MX
j��

MX
k��

Ajk

bZ
a

K��x� s�aj�s� dsbk�t��

Formula ������ can be treated as an integral equation for the function y����x��
The kernel of this equation is proportional to small K��x� t� and if condition
����� is satis�ed for ������ it can be solved by iterations method�
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Program packages for

numerical solution of ODE

��� Packages for broad range of application

First the well
known packages for broad range of application are discussed�

����� Maple ��

The package Maple is developed by Wateloo company� It includes the func

tion dsolve with several parameters which computes the numerical solution
of an initial value problem for linear and nonlinear ODEs as well as systems
of ODEs� Maple also includes an additional package DEtools which gives
more tools for plotting the results	 for preliminary transformations of the
equation etc� The boundary value problem can be solved	 for instance by use
of �nite di�erence method and further application of the numerical package
LinearAlgebra� Another possibility is proposed by Maple Power Tools a set
of additional programs attached to the major package of Maple� It can be
found on the web
site of Waterloo�

����� Mathematica ���

In this package produced by Wolfram Research company we also �nd the
function NDSolve with several parameters for solution of initial value prob

lems�

��
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����� COMSOL MultiPhysics

In this package �previously known as FEMLAB� the �nite elements method
is used for solution of di�erent boundary value problems�

����� NAG 
Numerical Algorithm Group�

This package was developed mostly for UNIX platforms� It includes several
programs for solution of ODEs� The original FORTRAN codes of earlier
versions of them can be found� However	 the interface facilities are very
poor�

��� Speci
c ODE�s solvers

The list of speci�c ODE&s solvers is larger� First we mention the package
BARSIC SLEIGN� developed by Monachov	 Matveeva and Kernitskii� It
is characterized by friendly interface and enables to solve Sturm
Liouville
problems� Solution of the Sturm
Liouvelle problems is based on Pruefer
transform to amplitude
phase variables and the package SLEIGN� taken as
a basic source� The package SLEIGN� was coded by Everitt	 Zettle	 Hinton
and Baily� The package SLEDGE coded by Pruess and Fulton also gives a
tool for solution Sturm
Lioville problems but the mathematical background
is di�erent� On the intervals where coe�cients of the equation are taken
as constants the explicit solutions are presented in the form of elementary
functions and further a matching procedure is used� In the Laboratory of
Informational Technologies of the Joint Institute of Nuclear Research several
programs of numerical solution of Sturm
Liouville problems depending on a
parameter have been developed on the basis of the abstract Newton method�
The authors of these programs are Pusinina and Pusinin�

As a tool for solution of initial value problem the library ODEPACK
by Hindmarsh can be proposed� It can be used for both sti� and nonsti�
problems� The friendly interface for programs consisting ODEPACK was
also developed by Monachov	 Matveeva and Kernitskii�
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