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Chapter 1

Examples of differential
equations

1.1 Physical pendulum

Our primary goal would be to present examples of typical ordinary differential
equations as they appear in various physical theories. The first exampleis the
second order nonlinear differential equation describing a physical pendulum.

pe

Wf - —%sin(qb). (1.1)
Here ¢ = ¢(1), t is time, ¢ is the angle of the pendulum with the vertical
axis, [ is the length of the pendulum and g is the acceleration due to gravity.
For this equation initial data (Cauchy data) should be posed. For instance

¢(1)|1=0 = o,
bl
dt t=0 v
The particular feature of this equation is that we can integrate it once ob-
taining so called first integral of motion. New variables are introduced:
dp .
L=
dt
is accepted as the dependent variable and ¢ is accepted as the independent
variable. Then (1.1) can be rewritten as
Lde* g

5% =-7 sin(¢).
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Integrating this equation we arrive to the first order equation

L g B
§qb —7cos(¢)—E.

This first order integral of motion corresponds to conservation of energy K
at the pendulum oscillations. The derived equation after returning to old
variables is simplified to

do g
i E+ 27 cos(¢),

which in its turn can be easily integrated

? 1
t = de. (1.2)
4o VVE +2(g/1) cos()
Unfortunately the integral at the right hand side of (1.2) can not be pre-
sented in terms of elementary functions and is known as an elliptic integral.
In the studied simple case the problem of numeric solution of the given dif-

ferential equation is reduced to numeric quadratures which can be performed
by Newton-Cotes numeric integration.

1.2 Normal waves in the ocean waveguide

Another example gives a theory of the long-range propagation of sound waves
generated by a monochromatic point source in a sound channel in the ocean
(ocean waveguide). It is an important problem in the underwater acous-
tics. This channel appears because the velocity of sound propagation has
a minimum at a certain depth. This problem can be studied under various
assumptions about the structure of the water layer and the ocean bottom.
Here the simplest case is considered when the properties of the water layer are
independent of horizontal coordinates and the bottom is a uniform nonelastic
half-space in which waves propagate with a constant velocity. Then the field
of a sound wave u(r),r = (x,y, z), is the solution of the problem

2

AutZu=—§(r—rp), 0<z<H, (1.3)
&

%
Au+ —u =0, 2> H,
‘H
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8_u
0z

16u

z=H-0 K aZ

2=H40

Here 6(r — ro) is the delta function that represents a point source at ro,
ro = (0,0,z), H is the depth of the ocean, w is the frequency, ¢(z) is the
sound velocity in a water layer, ¢y the sound velocity in the soil, ¢y > ¢(z),
and & is the density of the soil (the water density is assumed to be unity).

The problem can be solved by separating the variables in the cylindrical
coordinate system z, p, ¢. Neglecting the decay of the wave field as a result of
a propagation along the horizontal coordinates, the amplitude of the acoustic
field is represented as a sum of so-called normal modes

M 2
Z 1 kﬁ‘nlo m¢m(2) (1'4)

The solution contains the factor (i/4)H, ) that represents a cylindric wave
generated by a point source and the factor ¢m( ) that describes the depen-
dence of this wave amplitude on depth of the observation point. Equations
(1.3) imply that ¢,,(z) are the eigenfunctions of the homogeneous boundary
value problem for the vertical coordinate z:

(z
¥(0) =0, (1.5)

Here p = wd/cx is a large dimensionless parameter of the problem, c¢x =
minc(z), d is a characteristic scale of the coordinates. The eigenvalues u? of
the problem (1.5) determine the phase velocities ¢, of normal modes ,,(z)
as
_wd

HmD
The coefficients A, of the normal mode expansion (1.3) can be found from
the position of the source

Ay = Pnli0)

dN2

Cm

The constants N2 are the normalization factors of the functions 1,,(z) ex-
tended to the semi-axis [0, co). Since for z > H the functions ,,(z) can be
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written explicitly, we get for N2

T . ﬁ(—)ng

The primary task in the problem under consideration is to calculate asymp-
totics of phase velocities ¢,, and eigenfunctions ,,(z) for large values of p.
The calculations have two peculiarities. First, for a given position of the
source and the observation point, that is, for given z and zg, the terms in ex-
pansion (1.4) for which ¢,, < ¢(z0) — d or ¢, < ¢(z) — ¢ should be omitted.
For such terms one of the factors, either ¢,,(z) or ¢,,(20), is exponentially
small (the value of § is determined by desired accuracy of calculations). Sec-
ond, the total field u(r) is a result of interference of many normal modes,
and an important role in summing their contributions is played by the dif-
ferences in phase velocities. The accuracy of calculating the functions ¢,,(2)
might therefore be lower than the accuracy with which phase velocities are
computed.

1.3 Waves in the shallow water

Around hundred years ago a famous nonlinear partial differential equation
(which now is known as Korteveg-de-Vries (KdV) equation) was proposed in
order to describe the propagation of waves in shallow water. This equation
can be written as

Vyrw — 60, 4+ 31h = 0, (1.6)
where ¢ = ¢ (t, ). Particular solutions of (1.6) are functions
3c 1

V= _?coshz < 230(:1; —ct + 5))7

where ¢ and § are constants.
Another way to solve (1.6) is possible. New variables are introduced

Ot a) = 172w (2) + w(2))

and
2 = gt!/?
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with the following differentiation rules
g — t_l/?’i Q — _3éi
dx dz" Ot 23 dz’
¢www — t_5/3(w' + w2)7 _677Z)77Z)x — —6t_5/3(w' + w2)(w/ + w2)/7
—3; = t_5/3(—2(w’ + wz) —z(w' + wz)').
They induce reduction of the KdV equation to the ordinary differential equa-
tion
(w/ + wz)/// o 6(w’ + wz)(w’ + wz)/ o Z(w’ + wz) o Z(w/ + wz)/7
which in its turn can be reduced to a second order equation

v — 2% — 20 = 0. (1.7)

This equation belongs to the set of the so-called Painleve equations which
enjoys the so-called Painleve property.

1.4 Painleve equations

Suppose that an n-th order nonlinear ODE
w'(z) = Gw"™ ... w, 2) (1.8)

is studied with the function G(w™™',... jw,z) having good analytical prop-
erties in its variables which we specify later. Solutions of this equation as
functions of the independent complex variable z may have singularities de-
termined by the analytical behavior of the function G(w"™!,... w,z) only
(without taking into account initial data for the solution). These singularities
are called fized singularities. On the contrary those singularities of solutions
which can not be predicted by the coefficients of the equation and which
change their position if initial data for the solution change are called mouv-
able singularities. The movable singularity may be a pole of the solution, an
essential singularity, a branch point (both algebraic and transcendental).

Examples

The equation
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has the solution
w(z) =In(z+¢1) + e (1.10)

Hence, eq. (1.9) has a movable singularity which is a transcendent branch
point.

Linear equations which may be considered as a special case of nonlinear
equations have no movable singularities.

In a series of articles started by P. Painlevé the following problem has
been solved. Consider the second-order nonlinear ODE of the form

q"(t) = F(t,q,4), (1.11)

where F'(¢,q,q’) is a rational function in its arguments' The question arises:
when solutions of such an equation have no movable (depending on initial
data) critical points. By critical points are meant branch points and essential
singularities. In this case movable singularities may be only poles of the
solution. Absence of the movable critical points is known as the Painlevé
property. All equations (namely, 50 of them) of the form (1.8) possessing the
Painlevé property have been found. Among these are many solvable in terms
of elementary or other known functions (e.g. elliptic functions). But several
equations did not simplify to the known equations. Nowadays they usually
are called Painlevé equations denoted by PYI PV pIV pHI plland P,
Although the method of investigation proposed by Painlevé is sufficiently
simple the practical calculations involve considering many special cases and
therefore are rather laborious. Since the original studies on the problem
have to our mind more historical interest than the practical meaning we give
here a list of Painlevé equations. Standard Painlevé class equations are the
following

Pffy<z>=y"—§(§+L+ ! )<yf>2+<l+ L, 1)>y,
RUEHICEY AR E
(2 — 1) -

IMore often [ is considered even to be a second-order polynomial in ¢'.
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1 1 1
Ply(z) =y" - <— + ﬁ) ()" + 2y

2y 1
—1)2 1) 1
z? Yy z y—1
PIVy(z) = ¢ = () Syt — 12 =2 —ay - D=0, ()
z 2y 2 ) 7
1 1 1 )
pliI gtz Lo Lo 2 —vP=—==0 1.15
S =y = W)y - ey ) - =0 (L)
Ply(z)=y" —y* =2y —a =0, (1.16)
Ply(z) =y" —6y* — 2 = 0. (1.17)

Above the conventional notation for Painlevé equations was used. The de-
rived equation (1.7) coincides with P! at particular value of a parameter
a=0.

One of the main advantages of Painlevé equations in comparison to other
nonlinear equations is that beyond local solutions global solutions of these
equations can be constructed with prescribed asymptotic behavior at certain
points of independent variable in complex plane. This fact is due to the
isomonodromic deformation theory which recently has strongly influenced
the theory of special functions.

1.5 Prufer transform

Suppose that a second order ODE of the form

y'(2) + p*Qz, Ny =0 (1.18)
is considered with appropriate boundary conditions, say
y(0) =y(L)=0

It is assumed that

Q(z,A) >0 onl0,L]
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resulting in the fact that all solutions of (1.18) are oscillating. The parameter
A plays the role of eigen value parameter. The parameter p is supposed to
be large. This causes difficulties in numerical solution of (1.18).

The principal idea of Prifer transform is to present the solution with
the help of two auxiliary function — the amplitude and the phase. The
fine structure of the solution could be various. Here we shall focus on one of
possible strategies. Consider a comparison equation with constant coefficient.

w”(€) + w(€) = 0. (1.19)

Those solutions w(&) are chosen linearly independent of its derivative (for
example, w = sin(£)). Solutions of (1.18) are sought in the form

y = Alx)w(pr(z) + h(z)), (1.20)

and in addition it is required that the amplitude A(x) and the phases ()
and h(x) satisfy first order equations. The function 7(z) is called the main
term of the phase and h(x) is the correction term of the phase. For the
derivative y(x) we have

y' = A'w+ Aw'pr’ + Aw'h.

The next differentiation will produce the second derivative A”. To avoid this
we choose the correction term of the phase h(x) such that it nullifies the
coeflicient of A’, that is

Alw + Aw'h =0,

which results in

AWK

A w o

(1.21)

Note, that the functions A and & both have an oscillating character.
Further differentiation yields

y//: [4//L0/p7_/_|_[4/L0/p7_//_|_[41/0//p7_//,l//_|_[41/0//p2(7_/)27
or after use of (1.18) and (1.19)

A/w/pT/—l- Aw’pr”Aw”pz(T’)z T Aw”pr’h’ +p2QAw = 0. (1‘22)
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First we require that the sum of the terms with the highest power of p be
ZeTo

(7 =Q, (1.23)

or

=0
n Q/

T:2\/Q

This gives the expression for the main part of the phase, namely the function

7(x)

with

T = /J@dx. (1.24)

After manipulation with (1.22)

Aw'pr’ + Aw'prt” + Aw'pr'h =0,
7 Qh/
N (w ) 4wt — PRl = 0,
w

the equation for the correction h(p, ) is obtained
Rt ((w’)2 + w2> = wuw'7". (1.25)
Suppose that the solution w is chosen as

w = sin(§), w' = cos(&).
Then it holds
(w/)Z _I_ w2 — 17

and the equation for h(x,p) reduces to

which simplifies to

’g = g sin(2pt + 2h).

h:waQ_4Q
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Returning to the equation for the amplitude we obtain the equation
A/ Q/
a 2
7 = W) 50

with the solution

1=t ([ [ector e 2] ) -

Agexp (-/ [1 + cos(2pT + 2h)) %] d:z;) . (1.26)

It means that the Prifer transform reduces solution of the initial linear equa-
tion (1.18) to two explicit integrations and solution of a nonlinear first order
equation for h

T = / \/@d:p,
A= Agexp (—/ [1 + cos(2pT + Zh))fcﬂ )
h = f—Q sin(2pt + 2h).

The latter is solved by methods typical for nonlinear equations considered in
the next chapter.



Chapter 2

Numerical methods for
initial-value problems

2.1 Introduction

2.1.1 Initial-value problem

As we already seen many practical problems of physics can be reduced to the
solution of ordinary differential equations. General n-th order differential
equation can be written as

F (x,y(:z;),y’(:z;), o ,y(”)(:p)> = 0. (2.1)
Defining the vector-function z(x) as
y(l‘) = ZO(x)v y/(l') = Zl(‘r)? SR y(n_l)(x) = Zn—l(x)v (2'2)

equation (2.1) can be written as

F (:1;, zo(x), z1(x), ..., zn1 (), Z;_l(l'» =0.

Combining it with (2.2) yields the system of first-order differential equations

F (:1;,20(:1;),21(:1;), o ,Zn—1(51?)727/1_1(51?)> =0,
Z_o(®) = zn1(2), (2.3)

13
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Evidently, equation (2.1) is equivalent to system (2.3). Reduction of equation
(2.1) to the system of first-order differential equations is always possible, but
1s not unique.

Equation (2.1) or system (2.3) should be complimented with some addi-
tional conditions that fix a unique solution. It is well known that for the
differential equation of the n-th order one needs to specify n conditions. In
this chapter we consider only such cases when these conditions specify the
values of the unknown function y(z) and its derivatives y'(z), ..., y" 1 (z)
at a single value xg of the argument. The problems which are originated
by such conditions are called initial-value problems for differential equations
or Cauchy problems. The cases when the additional conditions specify rela-
tions between the values of the unknown function and/or its derivatives at
different values of the argument are discussed in the next chapter.

It is convenient to transform equation (2.1) to the form resolved with
respect to the highest order derivative

y"(x) = f(z,y(2),y'(2),... .,y V() (2.4)

and correspondingly to rewrite system (2.3) in the form
z'(x) = F(z,2(x)), (2.5)

where z = (20, 21,...,2,_1)7, and the vector-function F has the following

components
F;, =z;(x), 7=0,1,....n—2,

F._1=f(x,z0(x),z1(2),...,zp-1(2)).

Note, that sometimes it is not possible to rewrite equation (2.1) in the
form (2.4) because it requires analytic solution of a nonlinear in the general
case equation

Fx,z0, .. y2Zn-1,2n) =0

for z,.
Nevertheless most numerical methods exploit the form (2.4) of the differ-
ential equation or the form (2.5) for the system of first-order equations.

2.1.2 Regularization

The important property of an initial-value problem for the differential equa-
tion (2.4) is its stability with respect to small variation of initial data or
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right-hand side of the equation. The problem is called ill-conditioned if small
variations of the right-hand side cause large variations of the solution. Con-
sider the example of ill-conditioned problem

y/(l') = y(l’) -,
{ = (2.6

The general solution of this differential equations is
y(x) =14 a + ce”,

where ¢ is an arbitrary constant. Its value is obtained from the initial condi-
tion. In the case of problem (2.6) ¢ = 0. Thus y(100) = 101. However if one
changes a little the initial condition, say replace it by y(0) = 0.9999 then the
solution will become

y(x) =1+ 2 —0.0001e",

and y(100) ~ —0.2710%°.

Evidently that due to round-off errors the exponential will be added to
the solution y = 1+ and will cause large deviation of the numerical solution
from the true one.

Thus before the application of a particular numerical method to the given
initial-value problem one needs to check if the problem is well-conditioned
and when necessary perform such its transformations to achieve solution
stability. We require that for any solution of the differential equation the
following estimate holds

lz(2)[| < flz(zo)ll, 2> 0. (2.7)

In this case the problem is called stable.

If the problem is not stable, then standard numerical methods are inappli-
cable and one needs to develop special numerical schemes. Some approaches
are discussed in the section 2.6.2.

2.1.3 Numerical schemes

Let us first assume that the system (2.5) consists of one first order equa-
tion and can be resolved with respect to the derivative. So, let the Cauchy
problem to be of the form

{ y'(@) = f(z,y(x)), (2.8)

y(z0) = Yo
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It is required to find the function y(x) for + > 9. Two approaches are possi-
ble. In the first approach the function y(x) can be searched in some analytic
form, for example as a series. In the second approach the values of the func-
tion y(x) are searched only at some nodal set {j}r=01.. n. The methods
of the first type are conventionally called continuous and the methods of the
second type — discrete or finite-difference.

Continuous methods are discussed in more details in chapter 3 where
boundary-value problems are considered. Here we present only the method
of series which allows a truncated Taylor series

() = (o) + 9/ (zo) @ — 20) 4o+ [ o) — o)™ (29)

for the solution to be found.
The zero-th order term y(x) is given by the initial value

y(o) = yo.
Substituting this value to the differential equation, one finds
y'(20) = f(zo, Yo)-

In order to find higher order terms of the series (2.9) one differentiates the
equation in the problem (2.8). In particular

df (o, yo) _I_af(l‘oayo) ' df(xo0,Y0) _I_af(l'o,yo)

y”(l‘o) = o dy Y (51?0) = o By f(l'oa yO)v
3 9% f (0, Yo 9 f (o, Yo 9 f (2o, yo 2
y I (zo) = f(axQ ¥o) +2 J;(xayy )f(fl?oayO) + %f@oayo) +
0 Lo, Yo 0 Lo, Yo 0 Lo, Yo :
N f(ayy) f(axy ) +< f(ayy )) (20,50,

Each differentiation makes the formulae more cumbersome which results both
in the increase of time needed for computation and (which is more essential)
in possible loss of accuracy.

Besides finiteness of the radius of convergency of the series for the function
puts additional restrictions to the applicability of the method of series. In
order not to have cumbersome formulae one is forced to deal with small
number of terms. This naturally diminishes the domain of x where the
approximation (2.9) can be used.
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The method of series can be modified. In a neighborhood of the initial
point o the truncated series (2.9) can be constructed. This approximation
for the function y(x) has acceptable accuracy only in a vicinity of xg. Let
a point x; be chosen in that vicinity and y(x;) = y; be computed by the
formula (2.9). Using that data the problem (2.8) can be reformulated as the
initial-value problem with the initial data given at the point ;. Again, the
truncated series similar to (2.9) can be constructed in a neighborhood of the
point x;. In some vicinity of x; this approximation is acceptable and by
choosing new point x5 and computing y(x2), the initial problem (2.8) can be
rewritten with the initial data specified at * = x,. Repeating the steps of
the procedure several times allows the desired value zj of the argument z to
be reached. The procedure results in a step-wise polynomial approximation
of the solution y(x) on the interval z¢ < © < 2.

Note, that if only the principal order coefficients are stored, one gets a
discrete approximation of the solution.

In order to use finite-difference methods, let the mesh =, £k =1,2.3,...
to be introduced, and let the values of the function y(a) at the nodes to be
searched. Denoting y(x;) = yx, the computational rules of the form

Yk+1 = Yl(yk—qﬂa Ye—q+2,- - - 7yk) (2-10)

or

Y41 = 1/2(yk—q+17 Ye—q4+25 -+ s Yk, yk-l-l) (211)

can be introduced. The numerical method defined by the formula (2.10) is
called ¢-step explicit method and the method defined by the formula (2.11)
is g-step implicit method.

In the following sections we discuss one-step explicit methods, and multi-
step explicit and implicit schemes.

2.1.4 Accuracy and stability

Every computational rule (2.10) or (2.11) is characterized by some local dis-
cretization error 4. The total discretization error is accumulated when the
computational rule is used many times. Formulae (2.10) or (2.11) are usually
taken in such a way, that the approximate equality y(#s4+1) = yg41 becomes
the identity if the function y(x) is any polynomial of some degree m. This
can be achieved for example by the following method. Specify the function
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Y in the form of expression containing parameters a;, 7 =1,2,... , L. Then
decompose the right-hand side of (2.10) in a vicinity of point @ = xp41 in
Taylor series in powers of the step & up to 2™ and demand the zero-order
term to coincide with the value of the function y(z) at the point @ = 44
and higher order terms to be equal to zero. These requirements yield a sys-
tem of equations for the parameters a;. This system is usually nonlinear
and its solvability should be examined for each particular type of functions
Y. If one manages to find such parameters a; that satisfy the system and
do not depend on the function f(x,y), then the local discretization error of
the computational rule (2.10) will be of order O(h™*!). In order to find the
value of the function y(x) at a given point x, the computational rule should
be applied approximately x/h times. If at each step the local discretization
error is of order O(R™*!), then on the whole interval the discretization error
can increase up to the order O(h™).

Besides the error, as it was already remarked, there is another impor-
tant characteristics of the computational rule, namely its stability. Let the
problem of stability be studied taking as an example the equation

y'(x) = —Ay(a), A = const, Re(A) >0, y(0) = yo. (2.12)
The solution of this equation is the decreasing exponential
y(x) = yoexp(—Ax)

and the stability criteria is satisfied for this solution. That means that for
any = > 0 the estimate

ly(2)] < [yol (2.13)

holds. Note, that for a general differential equation the solution is stable if

of

For the numerical scheme the condition similar to (2.13) is required,
namely

Different types of stability of numerical schemes are distinguished. The
method is called conditionally stable if one needs to set some restrictions
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to the step h in order inequalities (2.14) to be satisfied. The method is called
a-stable if no restriction to the step is needed if the value of A lies in the
sector of the complex plane Re(A) > tan(a)|Im(A)|. The 7/2-stable method
is called absolutely stable.

2.2 One-step methods

One-step methods can be written in the form

Yesr = Y (Yr)-

The accuracy and stability of these methods depend on the function Y.

2.2.1 Euler method

The simplest one-step method is Euler method

Yerr = Y + [k, yr)h. (2.15)

Here h = xp11 — x}, is the step. Euler method is a modified step-wise method
of series with m = 1. This method can be also considered as based on the
quadrature formula of left rectangles applied to the integral in the formula

Thk41

Y(rps1) = ylaw) + / flt,y(t)) dt.

Tk

The accuracy of Euler method is of low order, the local discretization error
is of the second order by the step h and the total discretization error is of
the first order, that is

Y(2rs1) — g1 = O(h?),  y(x) =y = O(h).

Euler method is used as a starting component in more complicated schemes.
To analyse the stability of Euler method it is needed to be applied to
problem (2.12). This yields

Yi1 = (1 — AR)ys.
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It is evident that the stability requirement (2.14) is fulfilled if & < 2Re(A)/|A|?.
If this condition is violated, it results in the infinite growth of |y| for k — oo.
Thus Euler method is conditionally stable with the stability condition

af\ |of
hs 2Re (a@) \a—y

-2

(2.16)

In the case of real equations this condition is reduced to

of\ "
hﬁ?(a@) |

2.2.2 Runge-Kutta methods

Runge-Kutta methods are based on the idea of increasing the accuracy of the
computational rule without differentiating the right-hand side of differential
equation (2.8). The general scheme of y; computation according to Ruge-
Kutta method of order m can be presented in the following form

Sl = f(xkvyk)v
Sy = flzr + anh, ye + hB1151),
Sy = f(ar + oh,yr + hB2151 + h32252),

Sm = f <$k + amhvyk + hz;n:_ll ﬁij]) )
Y1 = Yr + R Z;ﬁ;l Y Si-

The coeflicients o, 3;; and v; are chosen such to achieve the highest posible
order of the accuracy.

Consider the case m = 2 and illustrate the procedure of finding the coeffi-
cients oy, 11, 71 and y,. We start with the general form of the computational
rule

Yktt = Yr + h<71f(xk7yk)+

(2.17)
2 (e anh, i + B f g ) ).
The conditions for the coefficients presented in formula (2.17) are originated
from the requirement that (2.17) coincides with Taylor series for the function
y(x) in as many terms as possible. It is easy to derive the decomposition of
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the right-hand side of formula (2.17) into series by powers of the step h.
Suppressing the arguments x, yi of the function f and its derivatives, it can
be written as

af  of

Yrt1 = Uk + (1 +72)fh+ 72 | 3= + 5=0uf h*+
oz dy

0*f 0*f 0?
+ 72 <—a2 + ax—ayalﬁuf + a—y25121f2> h ...

Ox2 1

Equating coefficients at powers of the step A in this formula and in (2.9), we
find that coefficients at h° coincide automatically. Equating coefficients at
h! yields the equation

Mty =1

At h? there are terms with different combinations of the function f and its
derivatives, namely: 0f/dz and f 0f/0y. As the method should work for
differential equations with arbitrary right-hand side and the coefficients of
the Runge-Kutta method should be independent of f, we equate coefficients
at these combinations separately. That gives two more equations

Y21 = 1/2, ’)/2611 = 1/2

Hence there are 3 equations for 4 unknowns

Mt =1,
Y201 = 1/2, (2.18)
Y2811 = 1/2-

The remaining arbitrariness as it can be shown is insufficient to equate terms
at h®. Thus method (2.17) corresponding to any solution of system (2.18)
has the third order for local discretization error and the second order for
the total discretization error. Two variants of the second order Runge-Kutta
method are usually used

S+ 5

Sy = flag + h,yx + hS1), Y41 = Y + 5

h (2.19)

and

h h
Sy =f (wk + §7yk + §S1> , Y1 = Yk + S2h. (2.20)
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Formula (2.19) is the analog of trapezoid quadrature, and formula (2.20)
corresponds to the mean rectangles. The approximate values of the function
y(x) required for both computational rules are computed by Euler method.

The application of (2.19) and (2.20) to problem (2.12) allows the stability
conditions to be found. Schemes (2.19) and (2.20) for (2.12) are reduced to

Yny1 = (1 — g(A + A(1 — Ah))) Yp = (1 — Ah + %(Ahf) i

o= (1 (1)) = (1 o)

correspondingly. Thus in both cases the schemes are conditionally stable
with the same requirement (2.16) as for Euler method.

The derivation of the systems for the parameters of Runge-Kutta methods
of higher orders is more cumbersome, but these systems can be derived and
their solutions can be found. Only some examples of the 3-rd and of the 4-th
order methods are presented here. One variant of the 3-rd order Runge-Kutta
method corresponds to Simpson quadrature formula

and

1 1
Sy =f (l‘k + §h,yk + §h51> . Sz = for + h,yr — hS1 + 2hS,),

h
Y41 = Y + E(Sl + 4.5, + 53>.

(2.21)
Another computational scheme is
1 1 2 2
Sey=flap+shyyr + 5051 ), Ss=flor+ shye+5h51 ),
3 3 3 3
k+1 = Yk + % S1+ 355 ). (2.22)
)

Another analog of Simpson formula
1 1 1 1
Sy =1 (wk + §h7yk + §h51> , Sz=11 (xk + §h7yk + §h52> )

S4:f(xk+h7yk+h53)7
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h
v = i+ 2 (St 425 + 255 + S4) (2.23)

and the analog of the method of “three eights”

1 1
Sy =f (wk + ghayk + §h51> )

2 1
53 = f (l’k —|— gh,yk — ghSl —|— hSQ) 5

Sy = f(axp+ hyyr + h(S1 — 524 S3)),

h
Yk+1 = Y + §<S1 + 352 + 353 + S4> (224)

are the most popular among the 4-th order Runge-Kutta methods.
The stability conditions for these schemes are

Of\ |0f
I e (a@) ay

-2

: (2.25)

where the coefficient €' depends on the method: for (2.21) C' ~ 2.51, for
(2.22) C' =2, for (2.23) and (2.24) C' ~ 2.79.

For Runge-Kutta methods with m < 4 the local discretization error has
the order m + 1. And there remain arbitrariness in the choice of the coeffi-
cients on the computational formula. For m > 5 the situation is different/
Now the number of coefficients appears insufficient to increase the accuracy.
The local discretization error of order O(h®) can be achieved only in the
methods with m = 6. One of the 6-th order Runge-Kutta methods is the
following

1 1
SZZf xk—l__hvyk—l__hsl 5
3 3
2 4 6
Ss=f (l‘k + 5h7yk + %hSI + %h&) )

1 15
54 = f (l’k ‘I’ h7 Yk ‘I’ ZhSl — 3h52 —|— Zth) R

2 10 50 8
3 27 9 8 81 ’

2
Ss = f (wk + =h,yp + —=hS1 + —hS; — 1h53 + —hS,
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4 2 13 2 8
Se = f (J?k + gh,yk + %h51 + %hsz + EhSS + %h54> ;

h
ke = Uk + 19—2<2351 412585 — 815 + 12556>.

This example shows that with the increase of the degree of accuracy the
formulae become much more complicated. Besides if the function f(z,y)
lacks smoothness, then the error can not be made smaller than the order
of the last continuous derivative of f. The stability condition also becomes
more restrictive. For the above scheme the constant C' in condition (2.25) is
approximately equal to 0.93.

Note that the results obtained according to Runge-Kutta methods do
not provide information on the errors of discretization. In practice one needs
to redo the computations twice with different steps h. For example one
performs one step of computations with the step i to get approximate value
y) and performs two steps of computations with the step h/2 to get another
approximation y?) for the same value of the unknown function y(x). Then,
knowing the order of accuracy of the method one can estimate the error
comparing these two approximations. The approximations y") and y® can
be also used to increase the accuracy. For example, let the discretization
error of the scheme has the leading term

y(zre1) — Y1 = CR™ + O(R™)

with €' depending on the derivatives of the function y(x) and on the point .
Assuming this dependence sufficiently smooth, one can suggest the approxi-

mate value
Qn_ly(l) — y(z)

21— ]

for which the order of accuracy is one degree higher.

Yk+1 =

2.2.3 Methods of quadrature formulae

When using Runge-Kutta or other methods one needs to choose the step h.
If the step is too large, then the discretization error will be large, if the step
is too small, then the computational costs will increase. As it was already
mentioned in order to estimate the errors in a particular numerical procedure
and by this to check if the step size is chosen correctly one needs to do the
computations twice. From this point of view it is convenient to suggest such
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numerical schemes that allow the local discretization error to be estimated
via some intermediate values used in the scheme. Some of such methods are
considered below.

By integrating the differential equation in (2.8) can be reduced to

l’k+1 1
Yri1 = Y + / fla,y(x)) de =y, + h/f(l‘k + ht, y(xp + ht)>dt-
Tk 0

One can use a certain quadrature formula

/q)(t) dt =y Wid(t;) (2.26)
0 =0
to calculate the integral, which yields
N
Ye+1 = Yk —I_hsz (l‘k —I-hti,y(l'k —I-htz)) (227)
=0

The right-hand side of (2.27) contains values of the function f(x,y) at y =
y(ap + ht;). These values (with the only exception of N = 0, {, = 0) are
unknown. However due to the multiplier h before the sum in (2.27) it is
sufficient to use lower order approximations for them. If the quadrature for-
mula (2.26) has the accuracy of order O(h™), then the approximations for
y(zr + ht;) can be taken with the accuracy of order O(R™'). This will not
reduce the total accuracy of formula (2.27). In order to find these approxi-
mate values one can use a formula similar to (2.27) based on a quadrature
formula of lower accuracy

! M
/q)(t) dt =) V;0(s))
0 J=0
This yields
M

y(xr + hty) = yx + ht; Z Vif (xr + htisj y(ar 4 hiisj)) .

=0
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The right-hand side can again contain unknown values of the function y(x).
They can be replaced with approximations having accuracy O(h"?). These
approximations are also obtained by a formula similar to (2.27). Repeating
these steps several times one comes to the formulae of the type (2.27) in the
right-hand side of which it is sufficient to use approximations for y(x) with
the discretization error of order O(h?). Such approximations are given by
Euler method (2.15).

Consider some examples of the method described above. Let N = 0
and the algebraic accuracy M of the quadrature formula (2.26) be equal to
one. The most popular formulae of this type are the formula based on left
rectangles quadrature formula which results in Euler method (2.15) and the
formula of right rectangles which yields implicit method

Ykt1 = Yk + hf(rg1, Yey1)- (2.28)

Note that the computational formula (2.28) is absolutely stable. Indeed
in the case of equation (2.12) one has

Ykt = Y& — AhYry1,

where {from
1
Ye+1 — myka

and for any positive i (remind that Re(A) > 0) one gets the estimate (2.14).
In a general case the computations according to the formula (2.28) re-
quire to solve a nonlinear equation with respect to yz4q1. For that an initial

approximation y]go) is needed. Then it is iterated

v =t b (o), d=12,00 (2.29)

The initial approximation can be obtained by Fuler method. Combining two
computational rules with only one iteration (2.29) yields the formula

Y1 = Yp + 1 f <$k+17 yr + hf(o, yk))- (2.30)

Note that the results obtained by Euler method and method (2.30) provide
two-side approximations of the solution in the leading order by &. One can
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apply the procedure described at the end of the previous section to increase
the order of the accuracy. This results in Euler-Cauchy method

ket = Y + g(f(xkv ye) + Feren, ye + 0 f (2, yk))> (2.31)
which has the local discretization error of the 3-rd order.

Analysis of stability shows that the scheme (2.30) is stable if the condition
(2.25) with C' = 1 is satisfied and the stability condition for the scheme (2.31)
is the same as for Euler method.

Let now M = 2, N = 0. The quadrature formula with one node which
has algebraic accuracy equal to two (M = 2), that is the highest possible
accuracy is the formula of mean rectangles. It leeds to the computational
rule

Ykt1 = Yk + hf(Trg1/2, Yeg1/2)- '

Here the notation x4/, = x; + h/2 is introduced for simplicity. Analogous
notations are used below.

Consider the method with M = 2, N = 1, based on trapezoid quadrature
formula. One has implicit method

h
Yer1 = Ypt 5 <f(xk7 Yr) + [(@ra, yk+1)>-

Similar to the implicit method of rectangles (2.28) this formula is usually
combined with Euler method

y;[ﬂl = yr + hf(xr, i),

2.33

By the upper indices in square brackets we denote here and below the order
of local discretization error, that is

y =y + 00,y = y(an) + OR?).

Thus, method (2.33) gives two approximations for y(xx). Their difference
allows the accuracy of computations to be estimated and by this to check if
the step h is correctly chosen.
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Note also that compared to rule (2.32) based on Gauss quadrature for-
mula, rule (2.33) appears mere effective. Indeed, to perform one step of
computations, that is to pass from = = x; to * = x4y according to rule
(2.32) the right-hand side of the equation should be calculated two times.
When using the rule (2.33) the right-hand side should be computed two

times, too. However, the value f(xp41, y,[f_l]_l) can be used at the next step if

scheme (2.33) is modified to

y;[ﬂl = yr + hf(zg, y;f]),

2.34

The accuracy of scheme (2.34) is a bit lower than that of the scheme (2.33),
but has the same order O(h?).

The stability conditions for schemes (2.32), (2.33) and (2.34) are the same

as for Euler method.
For M =3, N =1 one can use Gauss-Rado quadrature formula

/ F() do 2 (1(0) +35(2/3))

and mean rectangles formula for the computation of yl[i]-z/?)' This gives the
scheme

y][i]_l/g =yr + %f(xkvyk)v

3 2

y][g_|]_2/3 =yr + %f(xk-l-l/?n y][g—l]—l/3)7

4 3
yz[w]ﬂ = Yr + %f(xkv yk) + %f(xk-l-?/?n y}Eiz/:&)v

equivalent to the 3-rd order Runge-Kutta method (2.21).
One more example with M = 3, N = 2, is based on Simpson method

Uy = vk + Ef (e ue),

y,[i]H/z =y + %(f(l‘k, Yr) + [(2ry1)2, y;[i]rl/z)>a

y;[i]H = Yk + hf(Tpt1/2s yz[i]r1/2)v

yit, = ue + %(f(l‘ka ve) + A (Trg1y2, Uit ) + Flong, y;ﬂﬁ)-

(2.35)

One step of computations requires the right-hand side of the differential ec[lua—
tion to be calculated 4 times. Taking into account that the value f(xg41, yk-|—1
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can be used at the next step, one can conclude that the effectiveness of that
method is the same as of Runge-Kutta method (2.21). However compared to
Runge-Kutta method the method (2.35) allows the local discretization error
to be estimated. Besides the stability of the method (2.35) is a bit better,
since the coefficient C' in the inequality (2.25) for this method is approxi-
mately equal to 2.9.

2.3 Multi-step methods

The advantage of one-step methods is in the possibility to apply the compu-
tational scheme starting from the very first step. In order to apply methods
(2.10) with ¢ > 1 one needs first to find several values y;, 7 =1,2,... ,¢—1
by some one-step method. However the use of values yz_1, yp_2, ... in the
computational rule allows the accuracy of the method to be increased without
additional computation of the right-hand side of the differential equation.

2.3.1 Extrapolation Adams methods

Multi-step Adams methods can be explicit or implicit. First, consider explicit
methods. The general form of explicit Adams methods is as follows

q—1

Yirr = e+ h Y aif (@i, yei). (2.36)

=0

The computational rule (2.36) is based on the computation of the integral in
the formula

Th41
wr =t [ fagla)) de (237
Tk
according to the approximate formula in which the integrand is replaced by
the polynomial interpolating it at the points ay, 41, ..., 4_g41. Therefore

formulae (2.36) are also called extrapolation formulae. The coefficients «; are
uniquely determined by the integration of the interpolating polynomial

o = / Li(x) dx. (2.38)

Tk
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Here

Lite)=1] SR

i Thei T Tk

are Lagrange polynomials.

Note that the coefficients o, differ from the weights in the usual quadra-
ture formulae because the integration in (2.38) is carried out not along the
interval of interpolation [#_q4+1,2k], but outside of it.

When using the rule (2.36) the right-hand side of the differential equation
is computed only once at a step. Nevertheless the accuracy can be of suffi-
ciently high order by h. This is the main advantage of multi-step methods
compared to one-step methods such as Runge-Kutta methods. The disad-
vantages are twofold. Firstly, as it was already noted, one needs to know ¢
values of the function in the previous nodes. Secondly, Adams methods do
not allow to change the step of integration so easily because the coefficients
a; depend on the positions of nodes. The simplest case when the step A is
constant is considered below.

The method with ¢ = 2 is

Ye+1 = Yi + g<3fk - fk—1>- (2.39)

Here f(x4,y,) is denoted as f;. The local discretization error of (2.39) is
given by the formula

)
y($k+1) — Y41 = Ey”/(l'k)h?) + O(h4)'

Consider the stability property of method (2.39). In the case of differential
equation (2.12) it gives

Ah
Ykl = Yk — 7(3% — Y1)

Substituting here y;, = A* yields characteristic equation

Ah
A2 (1 - gAh> A— =0, (2.40)

For any positive Ah the discriminant D =1 — ah + %(Ah)2 of this equation
is positive. Hence, the zeros A; and Ay are real and A; # Az Scheme (2.39)
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is stable if [A{] < 1 and |A\;] < 1. It is not difficult to check that for real A
these conditions are satisfied if

T A
2 2

or Ah < 1. Thus the scheme (2.39) is conditionally stable with restriction
(2.25) with C' = 1. Compared to the second order Runge-Kutta methods the
stability condition sets stronger restrictions to the step h.

For ¢ = 3 one gets the formula

h
Yen = e+ 75 (23 = 1611 + 512,

with the local discretization error
3 (4) 4 5
y($k+1) — Yk41 = gy (wk)h + O(h )v

and for ¢ = 4 the formula is

h
Yet1 = Yi + ﬂ<55f’“ =59 fi—1 + 37 fr—2 — 9fk—3> (2.41)

with local discretization error

251
y(:lik+1) — Y41 = %y(5)($k)h5 + O(hG)'

The characteristic equations for these methods are

2 4
Yo (1= Ban) - a2 o
12 3 12

and

Mo (1= 2an ) xe — a4 3 = B,
24 24 24 8

The conditions of stability are Ah < 0.545 for the three-step method and
Ah < 0.3 for the four-step method.
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2.3.2 Interpolation Adams methods
Implicit Adams methods (also called interpolation schemes) have the form

q—1

Ye+1 = Yi + h Z 5if(51?k+1—z’7 yk+1—i)- (2-42)

=0

The coefficients 3; are computed by integrating the interpolation polynomials
constructed on the nodes xy11, g, ..., Tp_gt2-

Formula (2.42) contains the unknown value yx1;1 in the right-hand side
and requires solving a nonlinear equation. The method of simple iterations

q—2
WL = A 0> B (wims yims) + hBof(ripnwD), =12,
1=0

appears to be the most natural for that. This process converges because
the derivative of the right-hand side of (2.42) by yg41 is small due to the
multiplier h.

To start this procedure one needs the initial approximation y,g(fl which can
be obtained with the help of the explicit Adams method of the corresponding
order. Such combinations of explicit and implicit methods are known as
predictor-corrector method.

Some implicit Adams schemes are presented below. For ¢ = 2, one has
the scheme of trapezoid method

h
Yet1 = Yi + 5 <f(51?k+1, Yk+1) + fk> (2.43)

The local discretization error can be written as

1 n
y($k+1) —Yk+1 = —77Y (xk)h?) + O(h4)'

12
For ¢ = 3 one has the formula
h
e = vi + 15 (5 @k, virs) + 8 = fio1) (2.4)

with the local discretization error

1
y(:lfk+1) — Y41 = —ﬂy(él)(f]‘?k)h4 + O(h5)7
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and for ¢ = 4 the formula is

h
Vi1 = Yk + 2 <9f(51?k+17 Yret) 190k = 5frr + fk—2> (2.45)

and its local discretization error is

(o) = v = — 2oy B + O(R°).
720
Comparing these formulae with the corresponding explicit schemes one
can note that the local discretization errors have the same order, but the co-
efficients in the estimates are smaller. Another advantage of implicit schemes
is in their better stability. The scheme (2.43) is absolutely stable. Indeed in
the case of equation (2.12) one has

Ah
Y4t = Yk — 5 <yk+1 + yk>7

where from

1 — Ah/2
Yk+1 = myk-
For the stability of the method the absolute value of the fraction in the right-
hand side of this formula should not exceed unity which is the case for any
positive Re(A)h.
In fact method (2.43) is the most accurate absolutely stable linear method.
The characteristic equation for method (2.44) is

5 2 Ah
1+ —Ah )X = [1—ZAR) A+ = =0.
<+12 ) ( 3 >+12 0

Its zeros can be easily found

6 — 4Ah £ /36 — 36 Ah + 21(Ah)?

A —
b2 12 + 5Ah

For any AL > 0 the zero Ay is positive and is less than unity. The zero A5 is
negative and monotonously decreases with the step. Solving the inequality
A2 > —1 one can find the maximal step. It holds

18 + Ah > /36 — 36 Ah + 21(Ah)2,
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which yields Ah < 6. Thus the method (2.44) is conditionally stable with

the restriction .
af\~
h<6[|—=— )
B <5y>

Similar analysis of the characteristic equation

3 19 5 Ah
L4+ 2AR )N = (1= AL ) X2 — = Ah)+ = =
<+8 ) ( 24 ) oAt 5 =0

for the four-step method (2.45) allows the stability condition to be found as

of\ "
hﬁg(a@) |
2.3.3 BDF methods

The described above Adams methods exploit the idea of replacing the inte-
grand in the formula (2.37) with interpolation polynomial. In the backward
differentiation formula (BDF) methods the solution y(x) is interpolated itself.
Namely, in the BDF method of order n one performs polynomial interpolation
of the known data {@j_pi1,Yk—nt1}, -+ » {Tk, yx} and unknown value yg4q
of the function y(x) at the point x44;. The constructed interpolation poly-
nomial P,(x) is substituted into the differential equation and the unknown
value yr11 is found from the requirement that this equation is satisfied at the
point & = xy4q, that is

OP,(2p41)
ox

We present some examples. In the first order method

= [ (@hg1, Polrg)) -

Y41 — yk(x _ :I?k),

Py =y + A

which yields the equation

Yk+1 — Yk = hf(Tht1, Ykt1) (2.46)

for the unknown yi4q.
In the second order method the expression

aPQ(l']H_l) 1 1 3
_— = — — 1 — 2 — .
Or A ka 1 Yr + 2yk+1



2.4. SYSTEMS AND HIGHER ORDER EQUATIONS 35

for the derivative of the interpolation polynomial is used. In that case the
equation for ygiq 18

1 3
FYk-1 = 2yr + Skt = hf (gt Yagr)- (2.47)

Finally the third-order BDF method is

11 3 1
—Yh—2 — k=1 + Uk — SYkt1 = LS (Trg1, Yig1)- (2.48)

6 2 3
Equation (2.46) already appeared (see (2.28)) as the result of applica-
tion of right rectangles quadrature formula. As it was shown this scheme
is absolutely stable. It can be also shown that scheme (2.47) is absolutely
stable.

2.4 Systems of equations and equations of the
second and higher orders

Any differential equation of n-th order can be reduced to a system of n
differential equations of the first order. All the above methods can be applied
to such systems. Nevertheless the specific features of systems derived from
higher order differential equations allow some times to suggest more effective
algorithms. Moreover, the specifics of the higher order differential equation
can be also taken into account. For example, effective methods are developed
for those second order differential equations which do not contain the first
order derivative.

We illustrate the specifics of the initial-value problems for higher order
differential equations taking as an example the equation

y'(x) = fz,y(x),y(x)) (2.49)
with the initial data
y(wo) = Yo, y'(%) = yé-

In order to pass from the argument z; to x4, one needs to compute the
value of the function yr;; and the value of its derivative y; . ,. We rewrite
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equation (2.49) once and twice integrated from xj to @j4q
1
V(vee) =y +h / Flan + htoy(ex + ht),y'(xx + ht)) dt, (2.50)
0

1

ytwﬁl)sz-+hy2+-h2/ll—~ﬂf(xk+fw,y@%-+h8%yTxk+fw))d&

0

(2.51)
Applying quadrature formulae one gets
N
Yigr = Y + 1 Z Wi f (z + hty, y(zp + hi;), 2(@p + hty)), (2.52)
=0
N/
Yerr = Ye + hyp +h2Y WL = i) f (k4 hsi y(ae + hs), 2(x + hsy).
=0
(2.53)

Note that the quadrature formulae used for computing the integrals in
(2.50) and (2.51) can be taken different. If the nodes coincide, ¢; = s;, the
number of calculations of the right-hand side of the differential equation is
reduced. One can also use the fact that the integral in (2.51) is multiplied by
h* and the integral in (2.50) is multiplied by h. Hence the quadrature formula
for the integral in (2.51) can have a lower by one order of accuracy than the
quadrature formula for the integral in (2.50). Finally note that the multiplier
1 — sin (2.51) can be treated as the weight. Denoting W;(1 — s;) = V; and
requesting the algebraic accuracy of (2.52) and (2.53) to be equal to some
number m, one gets the system of nonlinear equations for the quantities ¢,,

W; and s;, V;

ZM/ZtZ:?’ j:1,2,3,...,m—1,
» J

1=0

N/ 4 1

D Visl=— . j=1,23,...,m—2.
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In order this system to be solvable it is necessary that m < 2N + 2 and
m < 2N’ + 3.

For example, in the case of m = 2 one can use the method of trapezoids
and the method of left rectangles. Changing the sequence of the formulae
one has

Yk+1 = Yk + hy;g + %h2fk7

2.54
y§§+1 = y§§+1 —I_%(fk—I_f(xk-l-lvyk-l—lay;g—l_hfk))- ( )

Here fi = f(xk, Yk, y;). Both formulae in (2.54) have the local discretization
error of order O(h?). Adding the formula

2

h
Ykt1 = Yk + by, + 6 <2fk + [(@hs1, Yrgr, Yy + hfk)>7 (2.55)

which does not require computing the right-hand side of the equation, yields
the method of the 4-th order. Formulae (2.54) and (2.55) also allow the

discretization error to be estimated by comparing the approximations

; 1
yk[j—]l = y;g + hfk7 y][i]q =Yr+ hy; + §h2fk

with more accurate ones

/ h
yk[i]l = Y1 T §<fk + f(@hg1, Yrg1, Yp + hfk)>7

2

h
yes = yk + hyl + €<2fk + f(@ra1, Yra1, Yp, + hfk)-

Consider now the case of differential equation not containing the first
order derivative

y"(z) = f(:z;,y(:z;)) (2.56)

Note that any linear equation of the second order can be transformed to the
form (2.56). The usual methods for the equations of the type (2.56) are the
explicit method

N
Yes1 — 20Uk + yrog = h° Z o f(@p—iy Yp—i)

=0
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and the implicit method

N
Yht1 — 2Yk + Yr—1 = h? Z Bif (Tps1—is Ynt1—i)-

=0

The coefficients a; and 3; are derived from the requirement that the difference
of the left-hand sides and the right-hand sides of these equations be of the
highest possible power of the step h.

The simplest explicit method is Verlet scheme

Y1 — 2Uk + Yr—1 = th(l'ka Yr)

widely used in molecular dynamics simulation.
One of the implicit methods of the 4-th order of accuracy is the Numerov
method

2
Yht1 — 2Up + Yp—1 = E(f(l'k—la Yk—1) + 10f(xk, yu) + f(@rs1, yk+1)>-
(2.57)

(See also chapter 3).

2.5 Stiff systems

Some systems of differential equations appear specifically difficult for numer-
ical solution. Usually this is the case when the processes described by the
equations in the system have significantly different scales of variation. Most
of the methods described above require too small step h and as a sequence
too large amount of computations. The development of effective algorithms
for numerical solution of such systems is an actual problem in the theory of
numerical methods.
Consider the example of the second order differential equation

y"(x) + 1001y’ (x) + 1000y (z) = 0.
The general solution of this equation is

y(l') — Cle—x + 026_100090.
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Let the initial condition be y(0) =1, ¢/(0) = —1. Then the solution is

—T

y(z) =e

Now try to find this solution numerically. Use for example the 4-th order
Runge-Kutta method (2.23). Rewrite the equation in the form of the system

{ = (2.58)

2y = —10012z9 — 10002,.

The stability condition for the method (2.23) applied to the system (2.58) is
h < 0.00279.

Indeed, Runge-Kutta method with the step A = 0.0025 gives a good approx-
imation, but it requires 400 steps and 1200 computations of the right-hand
side of the system in order to find y(1). Though the solution is slowly varying
the increase of the step even to h = 0.003 causes divergence of the solution.
Thus the condition of stability is defined by the most quick function e=100%®
in the general solution of the equation independently on if it is presented or
not in the solution of the initial-value problem. Similar difficulties appear
when other single-step or multi-step methods are used.

2.5.1 Implicit trapezoids rule

One of the most satisfactory tool to solve system (2.58) is the use of implicit
method (2.43) which is stable for any step h. For the system (2.58) the
method can be written as

21(xpgr) = 21 () +

%(Zm +aalen),
2o(her) = 2a(ar) — 5(100122(1;,9 410002, ()
100120 (g ) + 100021(:1:k+1)>
In the general case the system of algebraic equations at each step requires

application of some iterative method. However in our case the solution can
be found explicitly

2+ 1001 — 500h* 2h

alrre) = =00t 50002 %) T 5 1001 + s00m2 27k
(50 20005 (50) + 2~ 1001h — 5002 ()

Zol X = — Z1\ X Zol X
2R+ 21 10014 + 50082 "% " 9110014 + 50042 2VF
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Choosing the step h = 0.1, one gets

z1(0.1) = 0.9047619048, 29(0.1) = —0.9047619048,
which is a good approximation to the exact solution

y(0.1) = 0.9048374180, y'(0.1) = —0.9048374180.

Repeating the computations, after 10 steps one finds z1(1) = 0.3675725425
which is rather close to the exact value y(1) = e™! = 0.3678794412.

The implicit trapezoid method can be similarly applied to other stiff
systems. If the equations that appear at each step of the procedure can not
be solved explicitly, one needs to use iterative methods. Usually (for not
stiff systems) it is the method of simple iterations. The method of simple
iterations converges if the Jacobian

Ofi(x,z)

satisfies the condition
h
§||J|| < 1. (2.59)

In the case of stiff problems the Jacobian J contains large elements and the
condition (2.59) significantly shrinks the step h.

To overcome this difficulty there is a useful modification of implicit trape-
soids method. This modification is in the use of Newton method. Then no
difficulties with convergence arising from large negative derivatives df;/0z;
are encountered. However, each iteration requires computation of the Jaco-
bian.

2.5.2 Implicit Runge-Kutta methods

We already remarked that the implicit trapezoid methods (2.43) is the most
accurate among absolutely stable linear methods. The increase of accuracy
is possible if nonlinear schemes are used. We consider only the methods of
Runge-Kutta type. In the section 2.2.2 explicit formulae for the quantities
S; were used. In order to increase the stability of the scheme, let us use the
formulae

Si:f(xk‘l'aihvyk‘l'hz:ﬁijsj‘, 1=1,2,...,m.

i=1
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That is, finding S; requires now solution of the system of nonlinear equations.
If 3;; = 0 for 5 > 1 this system is triangular and can be approximately
linearized with one Newton iteration

i—1 -1
S = [1 — hBiify (sr:k + aih,ye + h Z@y&‘)] X

i=1

i—1
Xf (l‘k + Ozih, Yk + h Z ﬁ”S]> . (260)

J=1

The value yiy1 is computed by the formula

Yer1 = Yr + 1 Z ~iSi (2.61)
i=1
as in the conventional Runge-Kutta methods. The methods, based on the
formulae (2.60) and (2.61) are called linearized semi-explicit Runge-Kutta
methods or Rozenbrok methods.

Consider the example of the method with m = 2. In that case there
are 7 coefficients that should be chosen to achieve highest possible accuracy.
As in the case of conventional Runge-Kutta methods we equate coefficients
in the series decompositions of the right-hand side of formula (2.61) and in
Taylor series for the solution y(xy+h). The leading order coefficients coincide
automatically. Equating coefficients at first powers of h yields equation

Y1+ 72 = 1.

At L? there are terms containing f, and f,f. Equating coefficients at these
terms separately yields the equations

Y101 + Y200 = 1/2,
Y1011 + v2021 + Y2822 = 1/2.

At the next order there are combinations fu., fofy, fuuf? fueyf and fyzf,
which yields equations

ot 4+ yas = 1/3,

Y111 + Y101 821 + Y2822 = 1/6,

V2051 + 272021822 = 1/3,

Y111 + Y21 + Y22 P22 = 1/3,

Y1551 + 12011021 + 12821022 + 1253, = 1/6.
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Though there are 8 equations and there are only 7 parameters, there exist
two solutions

n=rEGV3 w=iF eV,
o =3+ 5V3, a=iE 5V |
ﬁnziiﬁ\/ga ﬁzlz%ié\/ga ﬁzzzi:Ff—z\/g-

The disadvantage of such approach is in the use of complex calculus. How-

ever, as it can be easily checked, the method is absolutely stable. Indeed for
(2.12) it reduces to

L= 3Ah 4 (A)
L+ LAR + L (AR 7

Yk+1 =

2.6 Special cases

2.6.1 Singular points

Differential equations for which the right-hand side or its derivative of some
order can be infinite at some points of the interval present additional difficulty
for numerical solving. Let the initial point x¢ be singular, that is, f(xo,yo)
does not exist. Evidently that no explicit method can be applied to such
initial-value problem. Although the use of some implicit schemes is possible,
they give wrong results.

There are three main approaches to finding solutions of a differential
equation with singular initial point

1. Change of variables that eliminates the singularity.

2. Construction of an approximate analytic solution in a small vicinity of
the singular point and passage to another initial point with the help of
this solution.

3. Development of special computational schemes that take into account
the specifics of the right-hand side of the differential equation.

Let us illustrate the above approaches taking as an example the following
problem

{ y/(l') = ﬁ - y2(x)7 (262)
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In the first approach one can make the substitution ¢ = /z and denote
y(x) =Y (t). Then the problem (2.62) is transformed to

Y'(t) =1 — 2tY?3(1),

which has no singularity.

In the second approach one can apply for example Picar method. Setting
the initial approximation as yo(x) = 0 the problem (2.62) can be rewritten
in the form of iterative rule

Yir1(z) = ] (2\1/5 — yf(s)) ds.

0

It determines

z? z°

2
yl(x):\/gv yz(:z:):\/f—?, yS(l’):\/E—?—F?l‘ \/E—%

The above approximations give
y1(0.1) &~ 0.3162, y2(0.1) ~ 0.3112, y3(0.1) ~ 0.3113,

which allows the initial data y(0) = 0 in the problem (2.62) to be moved to
the point x = 0.1.

In the third approach one can construct a special scheme for equation
(2.62). For that the equation should be rewritten in the integral form

Thk41

Ye+1 = Yr + / (ﬁ — 2(3)) ds.

Tk

The first term can be integrated analytically and left rectangles quadrature
formula can be applied to the second term. This results in the explicit scheme
similar to Euler method

Yetl = Yk + /Tht1 — /T — hyZ-

If the right-hand side of the equation has singularities at the internal
points of the interval [z¢, ], then since in general f(z,y) depends on the
unknown solution y(x) it is impossible to say in advance at what points there
will be singularities. Due to this fact it is preferable to apply the approach
of special schemes adequate to such problems.
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2.6.2 Special schemes

The methods of special schemes construction are based on the study and use
of the properties of general solutions for a class of similar equations. The
main idea is in the choice of appropriate representation for the solution. For
example, one can replace some functions of the argument x in the initial
differential equation by constants. This enables to transform the equation

y'(x) = f(z.y(x))

to some other equation
u'(z) = g(z,u(x))
that has explicit solution wu(z).

Further several approaches are possible. Either to consider the ratio
v(x) = y(a)/u(x), the difference w(x) = y(x) — u(x) or some other more
complicated combination of y(x) and u(x) and derive for this function a new
initial-value problem. The equation for v(x) is

fa o(@)u(e)) —v(w)g(z, ulx))
u(x)

v'(z) =
and for w(x) it is

w(2) = [ (e, w(e) + ule)) - g(e,ulz).

If u(x) sufficiently well approximates the solution y(x), then the new initial-
value problem for v(z) or w(x) appears to be more appropriate for numeric
solution.

In the other approach the auxiliary solution u(x) is used on a small in-
terval of the argument = in a similar way as in the step-wise variant of the
method of series the truncated Taylor series was used. We illustrate it taking
the example of the equation

y'(x) = —y*(x) — pla).

If p(x) = const the equation

has explicit solution

u(x) = —rtan(re + C).
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The constant C' is found from the condition u(xy) = ug and further u(xgyq)
1s determined. This results in the scheme

arctg <%> — arctg <%> = —hr.
r r

To rewrite this scheme for the function y(z) one takes r = \/p(2p41/2) at

each step,

Ykt Yk
arctg — arctg = —h\/Prs1/2-
(«/Pk+1/2> («/Pk+1/2> o

Solving this equation for yi11, yields the special explicit scheme
Yk — /Prri/z tan (hy/pryija) (2:63)
A/ PE+1/2 tan (h\/,Ok+1/2> ' '

It appears that scheme (2.63) is valid even if the stability condition is violated
and the exact solution has poles.

Ye+1 = /Pk+1/2

2.6.3 Equations which are not resolved for the highest
order derivative

Consider finally equations (2.1) that can not be represented in the form (2.4).
Let it be a first order equation

F(:z;,y(:z;),y’(:z;)) = 0. (2.64)

We can formally write

y'(x) = f(z,y(2)),
where for every x and y the value of the function f is defined as the solution
of the equation

F(:z;,y,f(:z;,y)) = 0. (2.65)

For solving equation (2.64) one can use explicit methods in which the
values of f(x,y) are determined as solutions of nonlinear equation (2.65)
with the use of some iterative method. The value obtained by interpolation
can serve as the initial approximation for f(x,y). This usually reduces the
number of iterations.
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When using implicit schemes, for example of the form (2.42), it is needed
to solve the system

g—1
Yrt1r = Yr + N Z Bi frs1-i
=0
F(xk-l-lvyk-l-lvfk-l-l) =0

for unknowns yr1q and fryq.

Note also that by increasing the order of an equation it is possible to
derive from the differential equation (2.1) a differential equation in the form
(2.4). Differentiation of equation (2.64) yields

Fo(x,y,y") + Fyle,y, v )y + Fy(a,y,y)y" =0,

which can be resolved for the second order derivative

Folz,y,y') + Fy(z,y,y)y
y”(l') — _ ( ) Z/( ) .

2.66
Fy'(xvyvy/) ( )



Chapter 3

Numerical methods for
boundary-value problems

3.1 Introduction

3.1.1 Boundary-value problem formulation

For the second and higher order differential equations boundary-value prob-
lems and spectral problems can be formulated. Here mainly linear problems
are considered, that is the differential equation and the boundary conditions
are assumed to be linear. In the general form the second order linear bound-
ary value problem can be writen as

y"(2) + pl2)y'(z) + q(x)y(z) = f(z), a<a<b,
agy(a) + a1y'(a) = A, (3.1)
ﬁoy(b) + By’ ( ) B

Here p(x), () and f(x) are given functions and ag, o1, Bo, #1, A and B are
given constants.

Note that if the solution y(2) should be found not only on the interval
[a, b], but also in its exterior, then after solving the boundary-value problem,
that is after determining y(«) for @ € [a, b, the computation of y(x) for x < «a
and for x > b is performed by solving the corresponding Cauchy problems.

Equation (3.1) can be conveniently represented in the form not containing
the first order derivative. This can be achieved for example by introducing

47
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the new unknown u(a) by the formula

o) =esp | =5 [ty dr ) ute)

The function u(x) satisfies the equation

o (2) + Q(e)ulx) = F(a), (3.2)

Q) = ale) = /() = o). Flay=eo |5 [ty ar ) sio)

The boundary conditions formulated at the points # = @ and @ = b can be
of three types: the conditions of the first kind if oy = 3y = 0; the conditions
of the second kind if ay = Gy = 0; and the conditions of the third kind or
mixed boundary conditions with all coefficients different from zero. Note also
that by subtracting some function that satisfies the inhomogeneous boundary
conditions problem (3.1) can be transformed to the boundary-value problem

with A = B =0.

3.1.2 Numerical methods

Most of numerical methods applied to boundary-value problems are based
on the same ideas that are used for initial-value problems. The unknown
function can be represented in the form of an expansion in some basic set of
functions or it can be replaced by its values at the nodes of a mesh.

The methods can be assorted into the following groups

e the methods that convert the problem to Cauchy problems (shooting
method and the method of differential sweep),

e the methods that allow the approximate values of the unknown function
to be found at a discrete set of points (finite difference methods),

e the methods of collocations in which the solution is represented in the
form of decomposition in some basis and the equation is satisfied at a
set of collocation points,
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e the projective methods, in which the coefficients of the decomposition
are found from the requirement that the residual is orthogonal to some
basis,

e the variational methods that reduce the problem to the minimization
of some functional.

3.2 Shooting method and its generalizations

3.2.1 Shooting method

One of the ideas that can be exploited in numerical schemes for boundary-
value problems is in the replacement of the boundary-value condition at the
point * = b by another condition at the point * = a. Consider instead of the
problem (3.1) the initial value problem

y'(z) + plx)y'(z) + q(@)y(z) = f(z), a<z<b,
aoy(a) + aqy'(a) = A, (3.3)
Yoy(a) +ny'(a) = &,

Its solution can be found with the use of computational schemes described
in the previous chapter. Indeed, solving the system of equations

{ Oéoy(a) + aly/(a) = A7
Yoy(a) +ny'(a) =€,

one can find the initial data

y(a) =yo,  y'la) =1y,

for the differential equation. The quantities yo and y{ depend on the parame-
ter £, called the shooting parameter. Therefore the solution will also depend
on . Performing computations up to x = b one can compute the residual
for the second boundary condition

(&) = Boy(b) + iy (b) — B.

By the choice of the shooting parameter it is possible to make the residual
sufficiently small. Hence, the boundary-value problem (3.1) is reduced to
solution of the equation

r(€) = 0. (3.4)
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When the parameter £ is found (usually by bisection method), the solution
of the boundary-value problem (3.1) coincides with the solution of the initial
value problem (3.3).

3.2.2 Differential sweep method

The differential sweep method is developed by A. A. Abramov for linear prob-
lems. We consider it for the second order boundary-value problem. Rewrite
the differential equation in the form of the system

Yy + anyr + ayz = fi, (3.5)
Yy + asnyy + azys = fo. ’

Here A = {a;;}i ;=12 is a given matrix-function and F = (f1, f)? is a given
vector-function (symbol T denotes transposition).
Rewrite the boundary conditions in the form

{ bi1yi(a) + biaya(a) = g1, (3.6)
b21y1(b) 4 baay2(b) = go. '

The main idea of the method is in converting the first condition in (3.6)
into some condition for the values of the unknown functions at the point
x = b. Then the values y;(b) and y2(b) can be obtained from this new
condition and the second condition in (3.6). This reduces the problem to a
Cauchy problem which should be solved in inverse direction from = = b to
r = a.

Let us write a relation

u(@)y(e) = =(x). (3.7)

Here functions u = (uy,us) and z(a) are arbitrary at this step. Let ui(a) =
bi1, uz(a) = bz, z(a) = g1, then relation (3.7) for & = a coincides with the
first boundary condition in (3.6).

Our goal is to find such functions uy, us and z that the relation (3.7) is
satisfied for arbitrary x. Differentiating relation (3.7) and using the differen-
tial equation (3.5), one gets

<u’ — uA)y =z —uf.
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If one requires the identities

u’' =uA (3.8)
and

2 =uf (3.9)

to be satisfied, then relation (3.7) is satisfied on the entire interval ¢ < x < b
for any vector-function y which satisfies the differential equation (3.5) and
the boundary condition at the point z = a.

In this way, solving the Cauchy problems for equations (3.8) and (3.9)
and finding the values u(b) and z(b), one gets the relation for y;(b) and y2(b).
Combining it with the second boundary condition, yields the system

u1(b)y1(b) + ua(b)y2(b) = 2(b),
{ 521(y1)éyb)(—|2 bzzyz((b))y:( 9)2_ ®) (3.10)

This gives the Cauchy problem for differential equation (3.5).

In practice the use of the described above scheme meets difficulties orig-
inated by round-off error accumulation resulting in ill conditioned relations
(3.7) especially in the case when solutions rapidly increase. This defect is
avoided in the following modification. The vector function u is represented
in the form of the product

u=Qv.

The function Q(x) is assumed to be equal to a unity at the point = a. By
differentiating (3.8) one gets

v +8v—-vA=0,

where
S=0Q'/Q.

Now the function () can be chosen such that the norm of the vector v remains
constant. If

S = LVAVT, (3.11)

vvT

7 7
<VVT> —vivli +v <VT> =

then
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= Svvl —vAVT + vwisT —vATVT = 0.

Addressing to (3.11) one finally gets for v(z)

1
vi=vA—- —vAvTy. (3.12)
\AY

Now the equation for the right-hand side of the relation

v(@)y(e) = h(x) (3.13)

can be derived. Differentiating and replacing the derivatives of v and y with
the help of (3.5) and (3.12), it is easy to get the differential equation

1
B+ ——vAvTh = vf (3.14)

vvT

for h(x).
Comparative to equations (3.8) and (3.9), equations (3.12) and (3.14)
appear superior for numerical realization of the differential sweep method.
Note that the idea of differential sweep method can be also applied to the
boundary-value problems for systems of larger dimension.

3.3 Finite difference methods

For the numerical solution of a Cauchy problem, the differential equation is
replaced by a set of computational formulae for step by step calculation of
the values y1, y2, ..., yn. Finite difference methods for the boundary-value
problem (3.1) are based on the idea to consider these computational formulae
as the system of equations for the unknown values of the function y(z) at the
nodes. Compared to Cauchy problems, when the step can be chosen adapted
for achieving the required accuracy, in finite difference methods the mesh
{z;}, should be chosen in advance. We consider only equidistant meshes
with a step h.

Besides the accuracy those systems are preferred which can be easily
solved, for example systems with three-diagonal matrices.
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3.3.1 Simple finite difference method

In the simplest finite difference method the derivatives in the differential
equation are replaced with finite difference approximations

-2 _
() = P o2, (3.15)
y@w:%ﬂiﬁi+omn (3.16)

This yields

Wit Z 20 F VL ) PRIy = ) + O(R). (317)
Equations (3.17) can be written for k =1,2,... , N —1. Two more equations
are taken from the boundary conditions.

Note that equations (3.17) have the accuracy of order O(h*). If the
boundary conditions contain derivatives y'(a) and/or y'(b) then, since one
can not use symmetric approximations (3.16) for the derivatives, simple finite

difference approximations

y(a)= 2RO, y(b) = P O

reduce the accuracy by one order. To write the approximations of order
O(h?) one needs to use the differential equation. For example, in order to
get the desired approximation for y'(a) one writes Taylor series

o+ h) = yla) +y'(@)h + 3y (@ + O

and substitutes the second derivative y”(a) from the differential equation

oo+ = y(o) (1= a0 ) 4/t (1= Gota)) + Gt? + 00

Taking into account that y(a) = yo and y(a + h) = y; one finds

_ Y1 — Yo (1 - %q(a)fﬂ) - %f(a)hQ

h (1 — %p(a)h) +O() =

y'(a)

h 2 4 2 2

The similar approximation can be derived for the derivative y'(b).

= (1 Pk p(a)W) g2 h SR o 38
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3.3.2 Numerov method

Compared to simple finite difference method, Numerov method allows the
accuracy of the scheme to be increased by two orders. For that the differential
equation should be rewritten in the form without the first order derivative

y'() + q(z)y(z) = f(2). (3.19)
Let the boundary conditions
y(a) = Ya, y(b) =Yy

be given.
One can write analogously to (3.15)

y'(xre1) — 29" (xx) + y" (xr-1)
h2

y W) = + O(h?).

Substituting the approximations for the 4-th order derivatives in the two
Taylor formulae

1 1 1
y(aper) = yr £y (xp)h + §y”(yk)h2 + gy”/(l'k)h?) + ﬂy(“)(l‘k)h‘li

1
- (5) 5 6
oo @)+ O(h)

and summation term by term yields
2 5 2
Yk+1 T Yr—1 = 2yx + Ey”(l’k-l—l) + ghzy”(l'k) + Ey”(l’k—ﬁ + O(h).

Now it is possible to exclude the second order derivatives with the help of the
differential equation. Simple manipulations result in the difference equation

1 5 1
(1 + EhZQk+1> Ye+1 — (2 — ghz%> Yr + (1 + Ehz%—1> Yk-1 =

1 5 1
= Efk-l—l + gfk + Efk—l + O(h°) (3.20)

of Numerov method.
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The matrices of the simple finite difference method and of Numerov
method are three-diagonal and the systems can be solved with sweep method.
One can prove that for g(x) < 0 these systems are nondegenerate for any
step h.

Numerov method can be also applied to a wider class of equations. Namely
the right-hand side in (3.19) can be dependent of y, that is the equation can
be nonlinear (quasi-linear).

It is worth noting that further increase of accuracy of the finite difference
scheme requires either to increase the number of diagonals in the matrix, or
to involve derivatives of functions p(x) and f(x).

3.4 Spline-collocation method

In some cases it is insufficient to find only the values of the unknown function
at the nodes. Then one can interpolate the data {zx,yr} obtained by a
finite difference method. The spline-collocation method combines the process
of data computation and the process of cubic spline interpolation in one
procedure.

Consider the problem

y' +aqy=f,
y(a) = A,
y(b) = B.

Let A = {z;}¥,, a = 9 < 1 < ... < zy = b be an arbitrary mesh.
We shall search the approximation of the solution in the form of a spline
S € S3(A). The dimension of the space of cubic splines S3(A) is equal to
N + 3. That means to define a spline one needs N + 3 conditions to be set.
Two of these conditions are the boundary conditions, the rest appear from
the requirement that the differential equation is satisfied at a set of points
x = &, which are called the collocation points, that is

S”(fk) + q(fk)S(fk) = f(fk), k=1,2,...,N. (3.21)

Note that it is not possible to choose the collocation point arbitrary. In
particular it is not allowed to have more than 3 collocation points on an
interval A; = [x;, 2;41], because otherwise the spline on this interval will be
completely defined by the data at these points, that is it will not depend on
the boundary conditions. It is also evident that one can not take collocation
points at jumps of the functions p(x) and f(z) if any exist.
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Below we shall consider the case when collocation points coincide with
the nodes of the mesh, that is & = «;.
Let the following notations

S(J}Z) = Uy, S”(l‘i) == MZ

be introduced. If the values u; are known, then the values M; can be found
from the system of equations

6 Uy — Uy U; — U;—
piMiy +2M; + My = ( s -

— .22
hi—y + h; h; hi—1 > 7 (3:22)

(here A; = hi/(h; + hi—1), pri = hi—1/(h; + hi—1)) which should be completed
with boundary conditions. After that the spline is given by the formulae
2

S(x) = wi(l — ) + uipat — %m —1) <MZ»(2 )+ (14 t)MZ»H) (3.23)

written in local variable ¢ which on each interval is defined by the formula

t_l’—l'i
= hZ .

Using the differential equation which according to our requirements is sat-
isfied for the spline S(x) at the nodes, the values M; can be excluded from
system (3.22). Multiplying by 1h;_ih;, one finds

h? | hihi_y h?
Al 1+ G -1 | vien — 1 — 5 Ui Wi + i 1-|-€qz'+1 Uip) =

hi—ih;

= (Hifior +2fi + Xifign) - (3.24)

Together with the boundary conditions ug = A, uny = B system (3.24) allows
the values u; and further the spline itself to be found.
Note that for ¢ < 0 by choosing the steps h; satisfying

hi_y max(—qi—1, —qi) < 6 (3.25)

the system with diagonal predominance appears. The error estimate is given
by the theorem
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Theorem 1 Let g(x) < Q <0 and the inequalities (3.25) are satisfied, then
Jor the solution y(x) from C?*([a,b]) the error is estimated as follows

;ﬁgﬁ()y@N—0<m%h>
Proof

Let us introduce the spline g(:z;) interpolating the table of values of the
exact solution y(x) at the nodes of the mesh A and satisfying the conditions
g’(a) = y'(a), g’(b) = y'(b). It is known that the interpolation error is of
order O(h*). Therefore

[S(2) = y(x)| < [S(z) = S(x)| + |S(2) = y(2)| < |S(x) = S(z)| + O(h").
(3.26)

The S(z) and S(z) are constructed by the explicit formulae that differ only
in the replacement of u; by y; and M; by S”( ;). From these formulae it is
easy to derive the estimate

2

& h o
[S(@) = 5(@)] < max Jui —yil + = max |M; — 5"(2)]. (3.27)

Noting that the second derivative is approximated by the spline with the
error of order O(h*) one concludes that the spline S satisfies the differential
equation with the error of order O(h?), that is

S§"(wi) + iS(x:) = fi + O(h?). (3.28)

Then )
|M; — 5" (2:)] < qilus — il + O(R?).

Substituting this estimate into (3.27) yields

2

15(x) — S(z)| < ( + % max q) max lu; — yi| + O(hY). (3.29)

r€[a,b]

Hence, to prove the theorem it is needed to derive the estimate for the
difference u; — y;. For this purpose the system (3.24) is rewritten in matrix
form

Au =d.
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Replacing equations (3.21) by (3.28) one can analogously get fory = (yo, 1, .- ,yn)’
the system of equations

Ay =d + e,
where € = O(h*). For the difference u; — y; this yields
Alu; —yi) = €.
For the systems with diagonal predominance the solution is estimated as

leil
max |u; — y;| < max —,
1=0,N =0,N 1,

where r; is the diagonal predominance factor for the i-th row. In the case of
system (3.24) these factors are

hihi—y hi_, h?
ri=1- G =X\ 1+ —=q-1)— Lt gt | =

3 6
hibhi_y h? h? hibhi_y
= — = N Qim1 — i1 < — .
54 G i T TG S g Q

Therefore, |u; —y;| = O(h*), which together with (3.29) and (3.26) concludes
the proof.

Note that the restriction ¢(z) < @ < 0 can be weakened to ¢g(z) < 0.
It is often possible to exclude condition (3.25), in particular the diagonal
predominance takes place for any mesh if ¢(z) = const.

3.5 The method of moments

In the above discussed methods the differential equation was replaced by a
set of conditions meaning that it is satisfied at a set of points called the
collocation points. However this is not the only method of passing from an
equation satisfied on an interval to a finite set of equations. Let u(x) be
an approximate solution of the boundary-value problem (3.1). Consider the
residual

r(2) = u'(2) + ple)d'(z) + g(z)u(z) — f(2).

If the solution is exact, then the residual is identically zero

ry = y"(2) + pla)y'(z) + q(z)y(z) — f(z) =0 (3.30)
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In the method of moments the condition r(a) = 0 is replaced by the require-
ments that the projections of the residual on a given set of functions v;(x)
is equal to zero, that is

b

/ru(x);/)](x) dx = 0. (3.31)

a

Note that if the functions ;(x) constitute a basis in Ls([a,b]), then con-
ditions (3.31) for y = 1,2,...,J mean that the first J coefficients in the
decomposition of the residual r(x) in the basis ¢;(x) are equal to zero.
Consider the method of moments in more details. Let us first exclude the
right-hand sides in the boundary conditions, that is transform the boundary-
value problem (3.1) to the similar problem with the homogeneous boundary
conditions. This can be done by subtracting a function that satisfies to the

boundary conditions in (3.1), but does not satisfy the differential equation.
Let

y(z) = yo(z) + U(x),

where yo(x) satisfies

Y

= A
Boyo(b) + Brys(b) = B.

Then the function U(x) should be the solution of the problem

{ aoyo(a) + aryy(a)

U"(x) + p(x)U'(x) + q(x)U(x) = g(x),
a)+ aU'(a) =0, (3.32)

where
g(x) = f(x) = (yo (=) + p(z)ys(x) + q()yo(x)) -

Consider a system of sufficiently smooth functions ¢(
Let these functions satisfy the boundary conditions from (3.
linear combination of these functions

w ]

un(x) = ZCkc,ok(:L‘), (3.33)
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also satisfies the boundary conditions of the problem (3.32). Let the solu-
tion be searched in the form of such a combination. In order the functions
un(x) can approach the solution U(x) when N — oo one requires the system
{¢r(x)} to be complete. (Actually it is sufficient to require that only the
solution U(x) can be decomposed by the system {¢x(x)}).

Let the coefficients C}, of decomposition (3.33) be chosen so that condi-
tions (3.31) are satisfied. Using the expressions for the residual these condi-
tions can be written in the form of the linear system

N
 CiAj=B;,  j=123,... N
k=1

Here

Ay / $i(2) ((x) + pla)eh(@) + qla)or(@)) dz, B = / bi(a)g(x) de.

a

The case with ¢; = 1, is called Galerkin method.

3.6 Variational methods

3.6.1 Least squares method

When using variational approach the boundary-value problem is replaced by
some minimization problem. Two main approaches are possible: the least
squares method being in the minimization of the residual norm |r(x)|, and
Ritz method based on energetic ideas.

We start with a more universal least squares method. As in the method of
moments the problem is transformed to the case of homogeneous boundary
conditions and the solution is represented in the form (3.33)

un(e) =) Cupnla),

The coefficients ' of this decomposition are found from the requirement
that the norm of the residual is minimal, that is the minimum of

ru(2)]? = / ()P
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is searched. After substitution of representation (3.33) for u(x) we get the
function of the variables (7, Cs, ..., Cy

2

F(Cl, CQ, ce ,CN) == / dx. (334)

b
a

(Z Ckﬁw(l‘)) —g(x)

Here we denoted by L the differential operator in the equation, that is £ =
d*/dz* 4 p(z)d/dz + q(x).

Thus the boundary-value problem for the differential equation is reduced
to minimizing the function (3.34), which can be done by standard methods
of minimization.

Note that the least squares method can be also applied to nonlinear prob-
lems and moreover with some simple modifications to ill-posed problems.

In our case of linear differential equation the function F'(Cy,Cs,...,Cy)
is quadratic and its minimization is reduced to solving the system of linear
equations

OF

—— =0, k=12,...,/N. 3.35
ack Y = Y ( )

Calculating the derivatives yields explicit form of system (3.35)

Y ApCi=by, k=12 N

7=1,N

where

b b
Ajr = Re //Qc,oj(x) Log(x)de |, brp=Re /,Cc,ok(:zj) g(x) dx

a a

One can chose in particular the basic splines Bj(x) for the functions
k(). Due to the finiteness property of basic splines this yields band-type
matrix A;;. With the increase of the degree n of the spline the number of
nonzero diagonals increases. On the contrary if n decreases, the number of
diagonals also decreases. However it is not possible to diminish the degree n
to zero because when computing the elements A,; one needs to integrate the
second derivatives of By(x). This is possible only if By € C'([a,b]) which
means that n can not be less than two.
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The supports of splines BZ(z) consist of three intervals of the mesh A.
Hence, the matrix elements Ay; with |7 — k| < 2 are different from zero and
the matrix of system (3.35) has 5 nonzero diagonals. The use of basic splines
in the Ritz method allows three-diagonal system to be obtained.

3.6.2 Ritz method

Ritz method can be applied only to sufficiently “good” problems. Namely, it
requires the operator £ of the boundary-value problem to be positive, that is
it should be symmetric and for any differentiable function w(z) that satisfies
the boundary conditions the scalar product

b

(u, Lu) = /u(:z;),ﬁu(:z;) dx

a

be non-negative. For example the operator of the problem

Ly(z) = —(p(x)y'(x)) + ¢(x)y(x) = f(x), a<a<b,
{ y(a)=0,  y(b)=0, (3.36)

where p and ¢ are positive-valued functions, is positive. Indeed, integrating
by parts yields

(u, Lu) = /U(fﬂ)(—(p(w)U’(l‘))’+Q(x)U($))dw-

b

—— w2+ [ (bl @) + gl de.

a

The non-integral terms disappear due to the boundary condition and the
integral is non-negative because the functions p and ¢ are positive-valued.
The following theorem is the cornerstone of Ritz method.

Theorem 2 The minimization problem for the functional
J(u) = (Lu,u)y —2(f, u). (3.37)

on the set of functions that satisfy the boundary conditions is equivalent to
the boundary-value problem (3.56).
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That means that the function which minimizes the functional J is the
solution of problem (3.36) and vice a versa, the solution of the problem
(3.36) minimizes functional (3.37).

We shall prove the above theorem for a boundary value problem for a
general positive operator. Let the function u(x) satisfies the boundary con-
ditions and minimizes the functional .J. Let a differential function v(x) also
satisfy the boundary conditions and z be any number. Consider the difference

J(u+ 2v) — J(u) = z ({Lu, v) + (Lo, u) — 2(f,v)) + 2* (Lo, v). (3.38)

As u minimizes the functional on the set of differential functions satisfying
the boundary conditions and the function u(x) + zv(x) belongs to this set
for any z, the inequality

J(u+ zv) > J(u) (3.39)

holds. For sufficiently small |z| the first (linear in z) term evidently dominates

in (3.38). Evidently if
<£u7 U> + <£U7 u> - 2<f7 U> 7£ 07

one can choose z of appropriate sign, so that inequality (3.39) is violated.

Therefore,
(Lu,v) + (Lo, u) —2(f,v) = 0. (3.40)

Then
J(u+zv)—J(u) = 22<£v,v> >0

because the operator L is positive.
Now integrate by parts in the second term in (3.40)

(Lo, u) = (v, Lu) = (Lu,v).
Then equality (3.40) can be written in the form
2(Lu — f,v)y =0.
This equality is satisfied for any (admissible) function v, which is possible

only if
Lu— f=0,
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which is equivalent to the equation in the boundary-value problem.

We showed that the function that minimizes the functional J satisfies the
boundary-value problem. Now we show the opposite, that the solution of the
boundary-value problem minimizes the functional. Let u be the solution of
the boundary value problem. Consider any other differential function w that
satisfies the boundary conditions and calculate the difference

J(w)=J(u) = ((Lu,w —u) + (L(w —u),uy — 2(f,w — u))+{L(w—u), w—u).

Integrating by parts in the second term and taking into account that Lu = f,
we see that the expression in brackets is equal to zero. Thus,

S(w) = J(u) = (L{w —u),w —u),

which is non-negative due to the positive property of the operator £. This
concludes the proof.

The main method of finding the minimum of functional (3.37) is the con-
struction of minimization sequence (or Ritz sequence). Assume an infinite
set {@k(x) 72, of functions ¢k (x), that satisfy the boundary conditions, are
sufficiently smooth for the application of the differential operator and all to-
gether form a complete system. Then the minimization sequence {U, ()
can be constructed in the form

o]
n=1

n

Un(z) = Z aner(x).

k=1

The coefficients ay, are chosen such that the value of functional (3.37) on
every U, is minimal, that is

J(U,) = min (<£ Z agner(), Z aknc,ok(x)> -2 <f, Z aknc,ok(x)>> )

hen k=1 k=1
(3.41)

For every fixed n the function of variables ay, that should be minimized is
quadratic

DD antin(Loni) =2 Y arlf,on). (3.42)
k=1

k=1 ;=1
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Note that in the scalar product (Leg, ;) one can perform integration by
parts, which in the case of problem (3.36) gives

(Lo o)) = / () (@) () + gl )p(e)ps (2)) de = Ay

a

This reduces the requirements of smoothness of the functions @i () to ¢r €
Wy (p), where W (p) is the space of functions that have generalized derivative
of the first order square-integrable on the interval [a, b] with the weight p(x).

The minimization problem (3.42) can be reduced to the system of linear
equations

Y Ayaj=Bi, k=12 n (3.43)
=1

Here .
Bi= [ fw)nte) da.

The system (3.43) is called Ritz system.

Compared to the least squares method one can use basic splines of the
first degree in Ritz method applied to the boundary-value problem (3.36).
This yields the system of equations with three-diagonal matrix.

3.7 Sturm-Liouville problem

Consider the following problem

—(p(a)" () + q(x)p(x) = Mp(z),  a<z<b,
{%b(s):(), ;b(%):o s (3.44)

for the parameter A and function ¢ (z).

One can also take Neumann or mixed type boundary conditions.

The problem (3.44) looks similar to a boundary-value problem, but there
is an additional parameter A. If this parameter is given, then one deals with
a homogeneous boundary-value problem for the function ¢(x). Evidently
that ¢(x) = 0 solves that problem. However for some special values of
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the parameter A, called eigen-values Ay, there exist nonzero solutions vx(x),
called eigen-functions. Eigen-functions are defined up to a multiplier and
to reduce this arbitrariness one can pose a normalization for example in the
form

/|;/)(:1;)|2d:1; = 1. (3.45)

(Then the eigenfunctions are defined up to a multiplier £1.)

The problem of finding eigen-numbers A, and eigen-functions ty(z) of
(3.44) is called the Sturm-Liouville problem. A Sturm-Liouville problem may
appear as an independent problem or as a part of a more complicated one,
for example, in variables separation method for partial differential equation.

There are several methods for solving Sturm-Liouville problem (3.44).
Some of them are described below.

3.7.1 Shooting method

Similar to shooting method for boundary-value problems the main idea is
in transforming the problem to Cauchy problem. One can set the second
condition at the point @ = a as

Pa) =1

because the solution ¥ () of the problem (3.44) is defined up to a multiplier.
Then one gets the Cauchy problem

—(p()¢'(2))" + (q(x) = M) ¥(x) =0,  a <z <b, (3.46)
Y(a)=0,  ¢a)=1 '
for the function (). Its solution for a given value of the spectral parameter

A can be obtained by any computational scheme of chapter 2, for example by
Runge-Kutta method. Then the problem is reduced to solving the equation

p(b,\) =0 (3.47)

with respect to A.

Equation (3.47) has infinite set of solutions and if one needs to find all
eigen-values of problem (3.44) on a given interval, two problems may appear.
Firstly, one needs to separate the solutions and secondly, one needs to check
that no solution is missed. To overcome these difficulties an analytic analysis
of a particular problem or some physical considerations can be useful.
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3.7.2 Finite difference method

Application of finite difference approximation of the differential operators in
the differential equation yields spectral problems of linear algebra. If equation
(3.44) is transformed to

y"(x) + Pl)y'(x) + (Q(x) = A) y(x) = 0,

then the algebraic system of the simple finite difference method can be easily
derived from equations (3.17), if one takes f(xx) = 0, p(xx) = P(ay) and
q(xr) = Q(xx) — A. Then one gets the spectral problem for the matrix

- +9(n) & — A 0 0
S+ =2 B4 Qx) - 0
o .
0 Loy Pl 24 Qayy)

To use Numerov method, one transforms the equation to the form without
the first order derivative, that is

y'(@) +(Qz) = A y(z) = 0.

Then replacing ¢ in equations (3.20) by @ — A yields the spectral problem
for the pencil

A = )B,
where A and B are three-diagonal matrices with the elements
) - th(e’L’k—ﬁ h2Q($k+1)
ap = =2+ gth(l'k)a a7t =1+ 1 att =1+ 12
5 _ 1
bi:a, bt lzb’g“zﬁ.

The eigen-numbers of these spectral problems approximate the first eigen-
numbers of Sturm-Liouville problem.

3.7.3 Variational methods

The idea of variational methods (least squares method and Ritz method) is
similar to that described in the case of boundary-value problems and leads
to spectral problems of linear algebra.
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3.7.4 The abstract Newton method

When solving the Sturm-Liouville problem by the methods described above
the problem is reduced to spectral problem of linear algebra and then this
problem is solved by the corresponding methods of linear algebra. Another
approach is also possible. The abstract (or operator) Newton method reduces
the Sturm-Liouville problem to a sequence of boundary-value problems.

Consider the abstract Newton method first in the general form. Suppose
the nonlinear operator equation

F(x)=y (3.48)

should be solved. Here F is the operator acting from a linear space X to the
linear space Y defined on some domain D(F). The element y € Y is given,
the element x € D(F) should be found.

In the simplest case when X = Y = R, equation (3.48) is a nonlinear
algebraic equation and its solution can be found by the usual Newton method
as the limit of the following iterations

_ Fx)
Fr(xx)’

where F' is the derivative of the function F.

In a little more complicated case when X = Y = R”, equation (3.48)

(3.49)

Xk+1 = Xk

represents the system

fi(x) =y,
F(x) =y, or fx)=y.
fn(X) = Yn-
Here x = (x1,23,...,2,)7. The Newton method in that case is in the

iterative process
Xpp1 = X — J 7 (xp ) (%),

where J(x) is the Jacobi matrix

8f1 (X) 8f1 (X) 8f1 (X)

81’1 81’2 Tt al’n
8f2(x) 8f2 (X) 8f2 (X)

J(X) = 8?’1 8%’2 e a?n
Binx) i) Ofax)

Az dzo Tt dzn
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In the abstract case the iterations are given by the formulae
Xpr1 = x5 — (B(xi) ™ F(x)
or
B(xk) (Xp41 — X)) = —F(xx) (3.50)

where the operator B(x) is the operator-derivative of F on the element x.
The operator F is differentiable on the element x if there exists a linear
operator B(x) acting from the space X to the space Y, such that for any
element z € X

|FGc+2) = Foo — Bixlall

2| 2] =0

Let us now turn back to Sturm-Liouville problem (3.44). The unknowns
are the eigen-value A and the eigen-function ¢’(x) corresponding to that eigen-
value. Let x consist of these unknowns

X:<¢<;‘>>.

The problem (3.44) in the space of square-integrable functions (¢» € Ls([a, b]))
is self-adjoint and its eigen-values belong to the real space R. Thus, the
elements x belong to the space being the product of Ly([a,b]) and R,

X = Ly([a, b)) @ R.

Let the operator F be defined on such elements x that have twice differen-
tiable first component vanishing at the end points of the interval [a,b]. Let
the action of the operator be defined by the formula

(ol () + gl (o) = M)
Flx) = J )Pz — 1

a

The defined above operator F is not linear, it acts in the space X, that is
Y = X.
Consider the problem

F(x) = 0. (3.51)
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The equation in the first component of (3.51) coincides with the differen-
tial equation of (3.44). The boundary conditions are taken into account by
the domain of the operator F. The equation in the second component of
(3.51) is the normalization condition (3.45). Therefore the operator equation
(3.51) is equivalent to Sturm-Liouville problem (3.44) with the normalization
condition for the eigen-functions.

To perform the iterations by formula (3.50) one needs to define the oper-
ator derivative of F. For that consider the element F(x + z)

—(p(y' + g’))'+CJ(¢+ O—A+ )+
J(@(x)+ ((x)) de — 1

a

- (%)

Neglecting quadratic in z terms gives

Flx+z)=

Here

Flx+z)=F(x)+ / +0(|lz]*)-

(3.52)

The second term in (3.52) gives the expressions for B(x)z, where B(x) is the
operator derivative of F on the element x.

Thus, at every step of the iterative procedure one needs to solve the
following linear problems

—(pC) + (¢ — M) — pthe = (p¥)" — (@ — M)k,
()= b =0, .

b
2 [ (@) Cp(z)de = 1 — ||oy )2
for z;, = (Q(:z;),/,ek)T, and then set
o e (0)() ()

Problem (3.53) can be reduced to two usual boundary-value problems, namely
let the functions (x) and n(x) be solutions of the following boundary-value
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problems

—(p&)" + (g — M)& = (p¥1) — (g — M),
{ Eula) = &(b) =0, (3.54)
and
{ —(pm)" + (¢ = M) = w,
me(a) = ni(b) = 0.
Then the function (x(x) = & (x) + prne(x) satisfies the differential equation

in (3.53) and the boundary conditions for any value of yj. The required value
of puy, can be found from the second equation in (3.53)

1 [ (430) + 20(o)6s(2) ) o

jp = (3.55)

2 [ ey (o)

Thus, the operator Newton method reduces the Sturm-Liouville problem
to a sequence of boundary-value problems. The convergence of the process
is quadratic as in the usual Newton method. However one needs a good
initial approximation. To make the method more robust the right-hand side
of (3.54) is sometimes multiplied by factor ¢, 0 < ¢t < 1. The additional
instability arises when you are searching several eigenvalues and the process
converges to already known solution. Suppose that eigen value A(Y) and eigen
function ¢(V(z) are known and we a searching for A = A?), o(z) = ?(z).
To avoid convergence of iterations to AV, ¢(1)(x) one can modify the process
by adding the orthogonality condition

/ () () de = 0,

which, in fact, is the property of the eigen functions of Sturm-Liouville prob-
lem.

Minimization of the functional constructed accoding to the method of
Lagrange multipliers

b

100) = [ (ple) 51001 + (ala) = yP(a)) do 22 [ ()

a
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yields the problem

— (") + (a(2) = A) () + e () = 0,
a) 0, p(b) =0,
|

/;z) Wde —1=0,
/ ()W a)de = 0.

Then besides & () and n,(x) each step of iterations requires finding solution

f1(x) of the boundary value problem

{ —(pi) + (g = M = W,
ne(a) = ne(b) = 0.

After that new approximation is computed as

Xiss = (( %/ni\z(lw) )) _ (( vr(z) + fk(fﬁ);kr ik;?:(x) — erbi() )) 7

where coefficients p; and e; are solutions of the system that appears as
linearization of normalization and orthogonality conditions

/«Lk/bﬁk(l‘)%/ﬂ( k/ka =

}
=~ [ (@) + () sV @)

a

() Pw(@ /b =

(w )+ 26 ) (o) da

HE

B —

[\Dl»—\
@\

[\Dl»—\
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3.8 Some generalizations

In this chapter we have considered spectral problems for the second order
linear differential equations. All the methods described in this chapter allow
generalizations to higher order equations and also to nonlinear problems. The
complifications are in the increase of dimension of the system of algebraic
equations to which the problem is reduced by this or that method. In the
case of nonlinear problems these algebraic systems will be nonlinear and their
solution may be a complicated problem. If the problem is almost linear, then
no difficulties usually appear, but if the problem is strongly nonlinear, then
the iterative process may diverge.

For strongly nonlinear problems one may pass to a parametric set of
problems. We illustrate this method taking as an example the boundary-
value problem consisting of the system of differential equations

2(x) = f<:1;,z(:1;)> (3.56)

and the system of boundary conditions

h<21(a),22(a),...  2a(a), 21(b), z(D), . . ,Zn(b)> — 0. (3.57)

Let us introduce a p and define functions F(x, z ) and H (z(a),z(b), p), such
that F(x,z,1) = f(x,2z) and H(z(a),z(b),1) = h(z(a),z(b)), and for p = 0
the problem

H<Z1(a),Z2(a),...  Zn(a), Zu(b), Zy(b), ... ,Zn(b),p> =0

is simple.

Then computing the solution of problem (3.58) for p = 0 one gets the
vector-function Z(x,0). This vector-function can be used as the initial ap-
proximation for problem (3.58) with some fixed sufficiently small parameter
p = p1. Again, computing the solution of this problem Z(x,p;) one can use
it as the initial approximation to the solution corresponding to a bit larger
parameter p = p,. Repeating the process and increasing the parameter p to
p = 1 one finds the solution of the boundary-value problem (3.56), (3.57).
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Chapter 4

Numerical methods for integral
equations

4.1 Types of integral equations

The integral equation is the equation that contains the unknown function
under the integration sign. We restrict ourselves to equations for the un-
knowns depending on one scalar argument and the integration is carried out
along an interval on the real axis. A large class of one-dimensional integral
equations can be presented in the form

b
y(a) = /K (x,t,y(1))dt, a<ax<b. (4.1)
Here K(x,1,z) is a given function (the kernel), and the function y(x) is the
unknown. The equation of the form (4.1) are called Uryson equations.

If the kernel K is such that K(x,t,z) does not depend on z for t > x
equation (4.1) can be rewritten in the form

xr

y(z) = / K (e, y(6) dt + f(x), (1.2)

a

where
b

:/[&xt*
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In this case the values of the function y(x) depend only on its values y(t)
for t < x. Such equations are called Volterra equations of the second kind.
Cauchy problems for differential equations can be reduced to such equations.
Let for example the differential equation takes the form

y'(z) = fw,y(x)).

Integrating reduces it to the equation

M@=M®+/ﬂmMDﬁ

which is a particular case of (4.2).
Linear integral equations are mostly studied. The equations of the form

b

oo+ [ Klattde= (o) (43)

a

with bounded (or weakly singular) kernel K'(x,t) are called Fredholm equa-
tions of the second kind.
In the case when the first term is absent

b

[ Kt = s

a

one deals with Fredholm equation of the first kind which is an ill-posed prob-
lem and requires regularization.
One can also formulate a spectral problem for the second kind Fredholm

equations
b

/[&’(x,t)y(t)dt = Ay(x),

a

being in finding such values of the spectral parameter A, for which nontrivial
solution y(x) exists. Some kind of normalization condition is required to
determine y(x) uniquely.
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Special type kernels of Fredholm integral equations that can be repre-

=3 a0y (1)

i=1

sented in the form

are called degenerate kernels. Integral equations with degenerate kernels are
equivalent to systems of M linear algebraic equations (we suppose that the
functions a; and b; are known). Indeed, substituting the expression for the
degenerate kernel into the integral equation (4.3) and changing the order of
integration and summation reduces the equation to

0+ 3 Baste) = flo). B = [ b

Thus the solution y(x) can be represented in the form of the decomposition

— Z Bkak(l')

Substituting this decomposition into the expression for B;, yields the system
of algebraic equations

b

B; — zpﬁ/ L) dt = /@ﬁﬁ@du j=1,2,..., M. (4.4)

a

System (4.4) is equivalent to the integral equation with degenerate kernel.

4.2 Method of iterations

Consider equation (4.1). The kernel K(x,t,z) may weakly depend on the
third argument, in a way that the inequality

b

/Axt ) — K (2.t 2(0) dt|| < Cllz(t) — 22(8)]] (4.5)
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holds with €' < 1. In this case one can apply the method of simple itera-
tions to the integral equation (4.1). This results in the following recurrent
computations

b
w(0) =0, gele) = [ Koty k=120

The sequence of functions yx(x) converges to the solution y(x) of the integral
equation (4.1) under the supposition that condition (4.5) holds. Indeed,
consider the difference yx(x) — y(x). Substituting here the expression for
yr(x) and taking into account that y(x) satisfies to the integral equation,
one gets

b

le) = (o) = [ (Klestons(t) = Kot y(o) e

Due to the inequality (4.5) the norm satisfyes
lyr(z) = y(2)|| < Cllyr-a(x) —y(z)].

Repeating the same estimates for yz_1, yx_2 ... , one finally finds

lys () = y(@)]| < CH{ly()]l

At C < 1 the sequence yi(x) converges to y(z).
For Volterra equations the sequence yi(x) converges under the following
weaker condition

|K(2,t,21) — K(a,t,29)] < Clz1 — 29, (4.6)
where (' is any finite constant. Similarly to the above, consider the difference
yr(2) — y(x) and with the use of recurrent rule get

(o) = wta)| = | [ (e togeca 0) = Koty ]|

a

Now we use the fact that the absolute value of the integral is not greater
than the integral of the absolute value and apply estimate (4.6). This gives
the estimate

waw—ywnsc/whmw_mmﬁ.
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Using the recurrent formula once again yields

xr

lyr(z) —y(z)] < C? / / lyr—2(s) — y(s)| ds dt.

a

Changing the order of integration and computing the integral by ¢ one finds

xr

() — y(2)] < C? / (2 — ) lyicals) — y(s)| s

a

Repeating the similar derivations one gets

[(z—s)?

wte) = s < € [T ) - )l as

The last inequality states that with the increase of k the error |yx(z) — y(x)|
tends to zero not slower than

Ck_l(l' o a)k—l

O

Thus the sequence y; converges to the solution exponentially.

Note that condition (4.6) is satisfied for any linear integral equations with
bounded kernel. Also it holds for integral equations with kernels differentiable
by the third argument and having bounded derivative.

For the equations other than Volterra equations the kernel should be small
for the convergence of the method. If condition (4.5) is not satisfied, other
methods are used.
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4.3 Method of quadrature formulae

In the method of quadrature formulae the unknown function is replaced by
a table of its values at a set of points which simultaneously play the role of
the nodes of integration. If the function y(x) is known then the integral in
the right-hand side of (4.1) can be computed with the help of a quadrature
formula. In the general form the quadrature formula can be presented as
follows

/ F(t)dt ~ ij flx;). (4.7)

Here w; are the weights and x; are the nodes. Using formula (4.7) one can
replace the integral in the right-hand side of (4.1) with quadrature sum

y(z) = Z w; K (2, 25,y(z;)).

Now if only the values in the nodes are taken into account, that is the above
equation is taken only for x = zy, then the approximations y; for the values
y(x;) can be found from the system

N
yi= Y wiK (w1,25,y;),
=1

N
o= Y wiK (wa,25,y;),
=1

4.4 Collocation method

We shall consider only linear equations (4.3). In collocation method as well
as in Bubnov-Galerkin method, discussed in the next section, the unknown
function is searched in the form of the decomposition in a system of some
functions ¢;(x). This system should satisfy the following criteria:
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1. functions ¢;(x) should be integrable,

2. for any finite N the functions ¢1(x), @2(x), ..., on(x) should be linear
independent,

3. any function can be approximated by the functions ¢;(x) with arbitrary
small error, that is the system {¢;(«)} should be complete.

Let us choose a finite number N and search for the solution y(z) in the
form

o) = i) (15)

with yet unknown coefficients ¢;. Substituting representation (4.7) into inte-
gral equation (4.3) yields

N b

Soi (i) + [ Kletpptoydt | = rie). (49)
=1 ’

The integral equation and consequently the above equality should be satisfied
for all values x from the interval [a,b]. Evidently that with the choice of the
finite set of parameters ¢; this can not be achieved in the general case. In
the collocation method one requires equalities (4.9) to be satisfied at a set
of preliminary chosen points x, which are called the collocation points. In
total these equalities form the system of linear algebraic equations

b

g %(fliM)Jr/K(xMat)%(t) dt | = fzar).

For the solvability and uniqueness it is needed that the number of collocation
points coincides with the number of unknown coefficients in decomposition
(4.8). Due to the conditions posed on the functions ¢;(x) this is also suffi-
cient.
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4.5 Bubnov-Galerkin method

Two systems of functions {p;(x)} and ¥y(x) are used in Bubnov-Galerkin
method. The first is called the coordinate system and is used in representa-
tion (4.8) for the solution similarly to collocation method. The other is used
to project the residual

N b

)= 3 i)+ [ Keogi)de ) - ria)

J=1 o

of equation (4.9). That is the system for the coefficients ¢; is found from the
requirement that the residual r(x) is orthogonal to the first N functions of
the system {¢x(x)}. The system {¢x(2)} should be also linearly independent
and complete. The system of equations takes the form

N
chAjk:BIm k:1,2,...,N,

i=1

where
b b b
i = [ [ Koo dde, 5= [ a0 dn

Note that the matrix of that system is more complicated than in collocation
methods and in the method of quadrature formulae. However, if the systems
{@;(2)} and {¢y(x)} are appropriately chosen, the system that should be
solved to get the solution with a given accuracy appears of less size than in
the other methods.
Indeed, let the kernel K(x,t) in (4.3) be represented in the form of a
converging series
K(x,t) =Y a;(x)b(t). (4.10)

J=1

Extracting a finite sum one can get the representation of the kernel in the
form of the sum of the degenerate kernel Ky(x,t) and the remaining series
Ki(x,t), that is

K(x,t) = Ko(x,t) + Kq(x,1),
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where
M 00
Ko(z,t) Za] ), Ki(z,t) = Z a;j(@)b;(1).
j=1 j=M+1

For sufficiently large M the kernel Ki(x,t) will be small due to the conver-
gence of the series (4.10).

If one neglects the correction Ki(x,t) to the kernel, then the integral
equation is replaced by the integral equation with degenerate kernel which is
equivalent to a system of algebraic equations (4.4). Let the solution of this
system be written as

B; = iAjk / b;(1) f(t) dt. (4.11)

If one does not neglect the correction, then the solution can be searched
in the form

y(z) = yOe) + yW(a), (4.12)
where

yO(z) = f(z) - Z Bjaj(z)

and yM(z) is some reminder. Temporally assume the function y)(z) to be
known. Then, substitution of representation (4.12) into the integral in (4.3)
yields

yO(z) + yW(a Z Bjaj(x /[M () +y Mt t)) dt,
(4.13)

where

Bj = / bi(t) (v (1) +y(1)) dt.
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After substituting the expression for y(®)(z) one gets the system for the co-
efficients B;

b b

B; —|—§:Bk/b] tag(t) dt = /b (t)f (1) dt—l—/bj(t)y(l)(t) dt.

k=1

Represent the solution of that system in the form similar to (4.11), namely

b b

i / s)f(s )d5‘|‘/bk(8)y(1)(8) ds

k=1

a a

Now substitute the above expressions into equation (4.13) and obtain

y(z) = /Al o) ( ZB a;(1) +y (1 )) dt

- F(x)+/1§’(x,t)y<1>(t) dt, (4.14)
where
F(z) = /Kl(:z;,t)f(t) dt — Z/[&’l(x,t)aj(t) dtZAjk/bk(s)f(s) ds,

b

M
[g’(:z;,t) = Ki(z,1) — Z A]k/lxl x,8)a;(s) dsby(t).

7j=1 k=1

Formula (4.14) can be treated as an integral equation for the function y™(z).
The kernel of this equation is proportional to small Ki(x,t) and if condition
(4.5) is satisfied for (4.14) it can be solved by iterations method.
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Program packages for
numerical solution of ODE

5.1 Packages for broad range of application

First the well-known packages for broad range of application are discussed.

5.1.1 Maple 10

The package Maple is developed by Wateloo company. It includes the func-
tion dsolve with several parameters which computes the numerical solution
of an initial value problem for linear and nonlinear ODEs as well as systems
of ODEs. Maple also includes an additional package DFEtools which gives
more tools for plotting the results, for preliminary transformations of the
equation etc. The boundary value problem can be solved, for instance by use
of finite difference method and further application of the numerical package
LinearAlgebra. Another possibility is proposed by Maple Power Tools a set
of additional programs attached to the major package of Maple. It can be
found on the web-site of Waterloo.

5.1.2 Mathematica 5.1

In this package produced by Wolfram Research company we also find the
function NDSolve with several parameters for solution of initial value prob-
lems.
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5.1.3 COMSOL MultiPhysics

In this package (previously known as FEMLAB) the finite elements method
is used for solution of different boundary value problems.

5.1.4 NAG (Numerical Algorithm Group)

This package was developed mostly for UNIX platforms. It includes several
programs for solution of ODEs. The original FORTRAN codes of earlier
versions of them can be found. However, the interface facilities are very
poor.

5.2 Specific ODE’s solvers

The list of specific ODE’s solvers is larger. First we mention the package
BARSIC SLEIGN2 developed by Monachov, Matveeva and Kernitskii. It
is characterized by friendly interface and enables to solve Sturm-Liouville
problems. Solution of the Sturm-Liouvelle problems is based on Pruefer
transform to amplitude-phase variables and the package SLEIGN2 taken as
a basic source. The package SLEIGN2 was coded by Everitt, Zettle, Hinton
and Baily. The package SLEDGE coded by Pruess and Fulton also gives a
tool for solution Sturm-Lioville problems but the mathematical background
is different. On the intervals where coefficients of the equation are taken
as constants the explicit solutions are presented in the form of elementary
functions and further a matching procedure is used. In the Laboratory of
Informational Technologies of the Joint Institute of Nuclear Research several
programs of numerical solution of Sturm-Liouville problems depending on a
parameter have been developed on the basis of the abstract Newton method.
The authors of these programs are Pusinina and Pusinin.

As a tool for solution of initial value problem the library ODEPACK
by Hindmarsh can be proposed. It can be used for both stiff and nonstiff
problems. The friendly interface for programs consisting ODEPACK was
also developed by Monachov, Matveeva and Kernitskii.
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