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Classification of Space-filling Curves

Definition: (recursive space-filling curve)

A space-filling curve f : I → Q ⊂ Rn is called recursive, if both I and
Q can be divided in m subintervals and sudomains, such that

• f∗(I(µ)) = Q(µ) for all µ = 1, . . . , m, and

• all Q(µ) are geometrically similar to Q.

Definition: (contiguous space-filling curve)

A recursive space-filling curve is called contiguous, if for any two
neighbouring intervals I(ν) and I(µ) also the corresponding
subdomains Q(ν) and Q(µ) are direct neighbours, i.e. share an
(n − 1)-dimensional hyperplane.
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Contiguous, Recursive Space-filling Curves

Examples:
• all Hilbert curves (2D, 3D, . . . )
• also Peano curves and Sierpinksi curves

Properties: contiguous, recursive SFC are
• continuous (more exact: Hölder continuous with exponent 1/n)
• neighbourship-preserving
• describable by a grammar
• describable in an arithmetic form

(see full set if slides)
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3D Hilbert Curves

• Wanted: contiguous, recursive SFC, based on division-by-2
⇒ leads to 3 basic patterns:

• in addition: symmetric forms, change of orientation
• always two different orientations of the components
⇒ numerous different Hilbert curves
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3D Hilbert Curves – Iterations

1st iteration 2nd iteration
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3D Hilbert Curves – Variants

Different orientation of the sub-cubes:

• same basic pattern (“Motiv”), same approximating polygon
• differences only visible from 2nd iteration
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Parallelisation using Space-filling Curves

Problem setting:
• “mesh” (2D, 3D, . . . ) of N unknowns (N � 1000)
• solve linear system(s) of equations (maybe repeatedly with

varying right-hand side)
• in the system, only spatially neighbouring unknowns are coupled

Parallelisation:
Distribute N unknowns to p partitions, such that

• each partition contains the same number of unknowns
(load balancing)

• for as many unknowns as possible, all neighbours are in the
same partition (⇒ avoids communication bewtween partitions)
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Parallelisation using Space-filling Curves (2)

Further demand: adaptivity
• add further unknowns (during/depending on intermediate results)

or drop unknowns
• (re-)partitioning required to be fast:

must not cost more computation time that going on with a bad
load balance

• “shape preserving”: if only few unknowns are added or dropped,
the shape of partitions should not change strongly
⇒ only few unknowns then need to migrate to another partition

⇒ popular strategy: use space-filling curves
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Hölder Continuity of Space-filling Curves

Definition: (Hölder continuous)

A function f is called Hölder continuous with exponent r on the
interval I, if a constant C > 0 exists, such that for all x , y ∈ I:

‖f (x)− f (y)‖2 ≤ C |x − y |r

Importance for space-filling curves:
• |x − y | is the distance of the indices
• ‖f (x)− f (y)‖ is the distance of the image points (in “space”)
• To prove: the Hilbert curve is Hölder coninuous with exponent

r = d−1, where d is the dimension:

‖f (x)− f (y)‖2 ≤ C |x − y |1/d = C d
√
|x − y |
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Hölder Continuity of the 3D Hilbert Curve

Proof analogous to simple continuity proof:
• given x , y ∈ I; find an n, such that 8−(n+1) < |x − y | < 8−n

• 8−n is the interval lenth for the n-tt iteration
⇒ [x , y ] covers at most two neighbouring(!) intervals.

• per construction of the 3D Hilbert curve, the function values h(x)
and h(y) are in two adjacent cubes of side length 2−n.

• the length of the space diagonal through the two adjacent cubes
is 2−n ·

√
12 + 12 + 22 = 2−n ·

√
6, hence:

‖h(x)− h(y)‖2 ≤ 2−n
√

6 =
(
8−n)1/3√6 =

(
8−(n+1)

)1/3
81/3

√
6

≤ 2
√

6 |x − y |1/3 q.e.d.
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Hölder Continuity and Parallelisation

• for the Hilbert curve (also Peano curve and all contiguous,
recursive SFC), we have:

‖f (x)− f (y)‖2 ≤ C d
√
|x − y |

• relates the distance |x − y | between indices to the disctance
‖f (x)− f (y)‖ of (mesh) points

• |x − y | corresponds to the section covered by the SFC (=̂
area/volume)

• gives relation between volume (number of grid cells/points) and
extent (e.g. radius) of a partition

⇒ Hölder continuity gives a quantitative estimate for compactness
of partitions
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Locality and Cartesian Grids

• from the Hölder continuity

‖f (x)− f (y)‖ ≤ C d
√
|x − y |

we directly obtain the following estimate:

‖f (x)− f (y)‖d

|x − y |
≤ Ĉ

• for a discrete (cartesian, e.g.) grid, we can compare this to the
relation ∥∥xi − xj

∥∥d

|i − j |
≤ Ĉ,

where i and j are the indices (memory positions, e.g.) of two grid
cells at positions xi and xj .
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