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Approximating Polygons of the Hilbert Curve
Definition:
The straight connection of the 4™ + 1 points
h(0), h(1-47"), k(2 -477), ... A((4" — 1) - 47"), (1)

is called the n-th approximating polygon of the Hilbert curve
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Properties of the Approximating Polygon

o the approximating Polygon connects the corners of the
recursively divided subsquares

¢ the connected corners are start and end points of the
space-filling curve within each subsquare
= assists in the construction of space-filling curves

e approximating polygons are constructed by recursive repetition
of a so-called Leitmotiv

=- similarity to Koch and other fractal curves

o the sequence of corresponding functions p,,(t) converges
uniformly towards h

= additional proof of continuity of the Hilbert curve
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Construction of the Peano Curve
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Recursive Construction:
« divide quadratic domain into 9 subsquares
e construct Peano curve for each subsquare
¢ join the partial curves to build a higher level curve
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Arithmetic Formulation of the Peano Function
t given in “nonal” system, t = 0g.n1nonsny . . ., then
p(00.minangna ...) = Po. 0 Pa, 0 Pa, 0 Pay - <8)
with the operators

L A s AR
P2(y): 1,42 P3(y>: 1 Ps(y): 1,2
§y+§ **y+1 *y‘i’g

3 3
—Llr+i —Llr+2 —lz+1
x 3 3 T 3 3 x 3
Py)= 1,1 Pily )= 1,2 Priy)= 1,41
3Y+3 —3Y T3 3Y+3
lr+o0 r+i lr+2
T 3 T 3 3 x 3 3
Poly) =11 Psly)= 1.1 Fey)=11
39 +0 —3¥ts 3y
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Approximating Polygons of the Peano Curve
Definition:
The straight connection between the 9" + 1 points
p(0),p(1-97"),p(2-97"), ..., p((9" = 1)-97"),p(1)

is called n-th approximating polygon of the Peano curve

***************************************
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Peano’s Representation of the Peano Curve

Definition: (Peanokurve, original construction by G. Peano)
e eacht e 7 :=0,1] has a ternary representation

t = (03.t1totsty...)
e define the mapping p: Z — Q :=[0,1] x [0,1] as

[ Ot k() K (k) ..
p(t) := ( Oz.ktl(tg)itﬁt?‘(m)?-- >

where k(t;) :=2 —t; fort; = 0,1,2 and k7 is the j-times
concatenation of the function .
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Peano’s Representation of the Peano Curve (2)

Still to prove:

e pis independent of the ternary representation

o the Peano curve p : 7 — Q defines a space-filling curve.
Comments:

¢ the direction of “meandering” can be both vertical (see
definition), horizontal, or mixed erfolgen

o actually, 272 different Peano curves can be constructed using the
same principles.
For comparison: there are only two different 2D Hilbert curves

e in addition: 2 Peano-Meander curves (not “meandering”)
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How Long are Approximating Polygons?

Example: Hilbert curve

e polygon results from recursive repetition of the Leitmotiv

e every recursion step doubles the length of the polygon in each
subsquare

= length of the n-th polygon is 2 - 2 — oo for n — .
Corollaries:

¢ the “length” of the Hilbert curve is not well defined

¢ instead, we can give an “area” of the Hilbert curve
(1, the area of the unit square)

= Question: what’s the dimension of a Hilbert curve?
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Fractal Dimension of Curves

Measuring the length of a curve:

o approx. the curve by a polygon with faces of length e
= gives a measured length L(e).
(cmp. approximating polygons of a space-filling curve)
¢ in case of recursive repeat of a Leitmotiv:
replace each units of length r by a polygon of length ¢, then

L(£) = gL(e), L(1) ==\

o we obtain for the length L(e):

log q
logr

L(e) = el =P, wobei D =log,q=
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Fractal Dimension of Curves (2)

Length of a recursively defined curve computed as

log q

L(e) = et 7P, mit D =log,q=
logr

= D is the fractal dimension of the curve
= \is the lenth w.r.t. that dimension
Gives “well defined” dimension:
e in all other “dimensions”, the length is 0 or oo!

o the fractal dimension of the 2D Hilbert curve is 2, similar for the
Peano curve

— Hausdorff dimension
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