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Approximating Polygons of the Hilbert Curve

Definition:

The straight connection of the 4n + 1 points

h(0), h(1 · 4−n), h(2 · 4−n), . . . , h((4n − 1) · 4−n), h(1)

is called the n-th approximating polygon of the Hilbert curve
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Properties of the Approximating Polygon

• the approximating Polygon connects the corners of the
recursively divided subsquares

• the connected corners are start and end points of the
space-filling curve within each subsquare

⇒ assists in the construction of space-filling curves
• approximating polygons are constructed by recursive repetition

of a so-called Leitmotiv

⇒ similarity to Koch and other fractal curves
• the sequence of corresponding functions pn(t) converges

uniformly towards h

⇒ additional proof of continuity of the Hilbert curve
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Construction of the Peano Curve

Recursive Construction:
• divide quadratic domain into 9 subsquares
• construct Peano curve for each subsquare
• join the partial curves to build a higher level curve
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Arithmetic Formulation of the Peano Function
t given in “nonal” system, t = 09.n1n2n3n4 . . ., then

p(09.n1n2n3n4 . . .) = Pn1 ◦ Pn2 ◦ Pn3 ◦ Pn4 ◦ · · ·
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Approximating Polygons of the Peano Curve

Definition:

The straight connection between the 9n + 1 points

p(0), p(1 · 9−n), p(2 · 9−n), . . . , p((9n − 1) · 9−n), p(1)

is called n-th approximating polygon of the Peano curve
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Peano’s Representation of the Peano Curve

Definition: (Peanokurve, original construction by G. Peano)
• each t ∈ I := [0, 1] has a ternary representation

t = (03.t1t2t3t4 . . .)

• define the mapping p : I → Q := [0, 1]× [0, 1] as

p(t) :=
(

03.t1 kt2(t3) kt2+t4(t5) . . .
03.k

t1(t2) kt1+t3(t4) . . .

)
where k(ti) := 2− ti for ti = 0, 1, 2 and kj is the j-times
concatenation of the function k.
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Peano’s Representation of the Peano Curve (2)

Still to prove:
• p is independent of the ternary representation
• the Peano curve p : I → Q defines a space-filling curve.

Comments:
• the direction of “meandering” can be both vertical (see

definition), horizontal, or mixed erfolgen
• actually, 272 different Peano curves can be constructed using the

same principles.
For comparison: there are only two different 2D Hilbert curves

• in addition: 2 Peano-Meander curves (not “meandering”)
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How Long are Approximating Polygons?

Example: Hilbert curve

• polygon results from recursive repetition of the Leitmotiv
• every recursion step doubles the length of the polygon in each

subsquare

⇒ length of the n-th polygon is 2 · 2n →∞ for n →∞.

Corollaries:

• the “length” of the Hilbert curve is not well defined
• instead, we can give an “area” of the Hilbert curve

(1, the area of the unit square)

⇒ Question: what’s the dimension of a Hilbert curve?
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Fractal Dimension of Curves

Measuring the length of a curve:
• approx. the curve by a polygon with faces of length ε
⇒ gives a measured length L(ε).
(cmp. approximating polygons of a space-filling curve)

• in case of recursive repeat of a Leitmotiv:
replace each units of length r by a polygon of length q, then

L
(

ε
r

)
=

q

r
L(ε), L(1) := λ

• we obtain for the length L(ε):

L(ε) = λε1−D, wobei D = logr q =
log q

log r
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Fractal Dimension of Curves (2)

Length of a recursively defined curve computed as

L(ε) = λε1−D, mit D = logr q =
log q

log r

⇒ D is the fractal dimension of the curve
⇒ λ is the lenth w.r.t. that dimension

Gives “well defined” dimension:
• in all other “dimensions”, the length is 0 or ∞!
• the fractal dimension of the 2D Hilbert curve is 2, similar for the

Peano curve

→ Hausdorff dimension
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