ACOPhys - State University of St. Petersburg

Space-Filling Curves and Their Applications in Scientific Computing

Space-Filling Curves

Michael Bader

Technische Universität München, May 19-23, 2008

Approximating Polygons of the Hilbert Curve

Definition:

The straight connection of the $4^{n}+1$ points

$$
h(0), h\left(1 \cdot 4^{-n}\right), h\left(2 \cdot 4^{-n}\right), \ldots, h\left(\left(4^{n}-1\right) \cdot 4^{-n}\right), h(1)
$$

is called the n-th approximating polygon of the Hilbert curve

Properties of the Approximating Polygon

- the approximating Polygon connects the corners of the recursively divided subsquares
- the connected corners are start and end points of the space-filling curve within each subsquare
\Rightarrow assists in the construction of space-filling curves
- approximating polygons are constructed by recursive repetition of a so-called Leitmotiv
\Rightarrow similarity to Koch and other fractal curves
- the sequence of corresponding functions $p_{n}(t)$ converges uniformly towards h
\Rightarrow additional proof of continuity of the Hilbert curve

Construction of the Peano Curve

Recursive Construction:

- divide quadratic domain into 9 subsquares
- construct Peano curve for each subsquare
- join the partial curves to build a higher level curve

Arithmetic Formulation of the Peano Function

t given in "nonal" system, $t=0_{9} . n_{1} n_{2} n_{3} n_{4} \ldots$, then

$$
p\left(0_{9} . n_{1} n_{2} n_{3} n_{4} \ldots\right)=P_{n_{1}} \circ P_{n_{2}} \circ P_{n_{3}} \circ P_{n_{4}} \circ \cdots\binom{0}{0}
$$

with the operators

$$
\left.\begin{array}{ll}
P_{2}\binom{x}{y}=\binom{\frac{1}{3} x+0}{\frac{1}{3} y+\frac{2}{3}} & P_{3}\binom{x}{y}=\binom{\frac{1}{3} x+\frac{1}{3}}{-\frac{1}{3} y+1}
\end{array} P_{8}\binom{x}{y}=\binom{\frac{1}{3} x+\frac{2}{3}}{\frac{1}{3} y+\frac{2}{3}} ~ 子 \begin{array}{l}
-\frac{1}{3} x+\frac{1}{3} \\
\frac{1}{3} y+\frac{1}{3}
\end{array}\right) \quad P_{4}\binom{x}{y}=\binom{-\frac{1}{3} x+\frac{2}{3}}{-\frac{1}{3} y+\frac{2}{3}} \quad P_{7}\binom{x}{y}=\binom{-\frac{1}{3} x+1}{\frac{1}{3} y+\frac{1}{3}} .
$$

Approximating Polygons of the Peano Curve

Definition:

The straight connection between the $9^{n}+1$ points

$$
p(0), p\left(1 \cdot 9^{-n}\right), p\left(2 \cdot 9^{-n}\right), \ldots, p\left(\left(9^{n}-1\right) \cdot 9^{-n}\right), p(1)
$$

is called n-th approximating polygon of the Peano curve

Peano's Representation of the Peano Curve

Definition: (Peanokurve, original construction by G. Peano)

- each $t \in \mathcal{I}:=[0,1]$ has a ternary representation

$$
t=\left(0_{3} \cdot t_{1} t_{2} t_{3} t_{4} \ldots\right)
$$

- define the mapping $p: \mathcal{I} \rightarrow \mathcal{Q}:=[0,1] \times[0,1]$ as

$$
p(t):=\binom{0_{3} \cdot t_{1} k^{t_{2}}\left(t_{3}\right) k^{t_{2}+t_{4}}\left(t_{5}\right) \ldots}{0_{3} \cdot k^{t_{1}}\left(t_{2}\right) k^{t_{1}+t_{3}}\left(t_{4}\right) \ldots}
$$

where $k\left(t_{i}\right):=2-t_{i}$ for $t_{i}=0,1,2$ and k^{j} is the j-times concatenation of the function k.

Peano's Representation of the Peano Curve (2)

Still to prove:

- p is independent of the ternary representation
- the Peano curve $p: \mathcal{I} \rightarrow \mathcal{Q}$ defines a space-filling curve.

Comments:

- the direction of "meandering" can be both vertical (see definition), horizontal, or mixed erfolgen
- actually, 272 different Peano curves can be constructed using the same principles.
For comparison: there are only two different 2D Hilbert curves
- in addition: 2 Peano-Meander curves (not "meandering")

How Long are Approximating Polygons?

Example: Hilbert curve

- polygon results from recursive repetition of the Leitmotiv
- every recursion step doubles the length of the polygon in each subsquare
\Rightarrow length of the n-th polygon is $2 \cdot 2^{n} \rightarrow \infty$ for $n \rightarrow \infty$.

Corollaries:

- the "length" of the Hilbert curve is not well defined
- instead, we can give an "area" of the Hilbert curve (1, the area of the unit square)
\Rightarrow Question: what's the dimension of a Hilbert curve?

Fractal Dimension of Curves

Measuring the length of a curve:

- approx. the curve by a polygon with faces of length ϵ \Rightarrow gives a measured length $L(\epsilon)$. (cmp. approximating polygons of a space-filling curve)
- in case of recursive repeat of a Leitmotiv: replace each units of length r by a polygon of length q, then

$$
L\left(\frac{\epsilon}{r}\right)=\frac{q}{r} L(\epsilon), \quad L(1):=\lambda
$$

- we obtain for the length $L(\epsilon)$:

$$
L(\epsilon)=\lambda \epsilon^{1-D}, \quad \text { wobei } \quad D=\log _{r} q=\frac{\log q}{\log r}
$$

Fractal Dimension of Curves (2)

Length of a recursively defined curve computed as

$$
L(\epsilon)=\lambda \epsilon^{1-D}, \quad \text { mit } \quad D=\log _{r} q=\frac{\log q}{\log r}
$$

$\Rightarrow D$ is the fractal dimension of the curve
$\Rightarrow \lambda$ is the lenth w.r.t. that dimension
Gives "well defined" dimension:

- in all other "dimensions", the length is 0 or ∞ !
- the fractal dimension of the 2D Hilbert curve is 2 , similar for the Peano curve
\rightarrow Hausdorff dimension

