

ACOPhys – State University of St. Petersburg

Space-Filling Curves and Their Applications in Scientific Computing

Space-Filling Curves

Michael Bader
Technische Universität München, May 19–23, 2008

Space-filling Curves – Algorithms

Traversal of *h*-indexed objects:

- given a set of objects with "positions" $p_i \in \mathcal{Q}$
- traverse all objects, such that $\bar{h}^{-1}(p_{i_0}) < \bar{h}^{-1}(p_{i_1}) < \dots$

Compute mapping:

• for a given index $t \in \mathcal{I}$, compute the image h(t)

Compute the index of a given point:

- given $p \in \mathcal{Q}$, find a parameter t, such that h(t) = p
- problem: inverse of h is not unique (h not bijective!)
- define a "technically unique" inverse mapping \bar{h}^{-1}

Arithmetic Formulation of the Hilbert Curve

Idea:

• interval sequence within the parameter interval $\mathcal I$ corresponds to a quarternary representation, f. e.:

$$\left[\frac{1}{4}, \frac{2}{4}\right] = \left[0_4.1, 0_4.2\right]$$

- every subsquare of the target domain contains a scaled, translated, and rotated/gespiegelte Hilbert curve.
- ⇒ **Construction** of the arithmetic representation:
 - find quarternary representation of the parameter
 - use quarternary coefficients to determine the required sequence of operations

Arithmetic Formulation of the Hilbert Curve (2)

Revursive approach:

$$h(0_4.q_1q_2q_3q_4...) = H_{q_1} \circ h(0_4.q_2q_3q_4...)$$

- $\tilde{t}=0_4.q_2q_3q_4\dots$ is the relative parameter in the subinterval $[0_4.q_1,0_4.(q_1+1)]$
- $h(\tilde{t}) = h(0_4.q_2q_3q_4...)$ is the relative position of the curve point in the subsquare
- H_{q_1} transforms $h(\tilde{t})$ to its correct position in the unit square:
 - rotation
 - translation
- expanding the recursion equation leads to:

$$h(0_4.q_1q_2q_3q_4...) = H_{q_1} \circ H_{q_2} \circ H_{q_3} \circ H_{q_4} \circ \cdots$$

Arithmetic Formulation of the Hilbert Curve (3)

If t is given in quarternary digits, i.e. $t = 0_4.q_1q_2q_3q_4...$, then h(t) may be represented as

$$h(0_4.q_1q_2q_3q_4...) = H_{q_1} \circ H_{q_2} \circ H_{q_3} \circ H_{q_4} \circ \cdots \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

using the following operators:

$$H_0 := \left(\begin{array}{c} x \\ y \end{array} \right) \to \left(\begin{array}{c} \frac{1}{2}y \\ \frac{1}{2}x \end{array} \right) \qquad H_1 := \left(\begin{array}{c} x \\ y \end{array} \right) \to \left(\begin{array}{c} \frac{1}{2}x \\ \frac{1}{2}y + \frac{1}{2} \end{array} \right)$$

$$H_2 := \begin{pmatrix} x \\ y \end{pmatrix} \rightarrow \begin{pmatrix} \frac{1}{2}x + \frac{1}{2} \\ \frac{1}{2}y + \frac{1}{2} \end{pmatrix} \quad H_3 := \begin{pmatrix} x \\ y \end{pmatrix} \rightarrow \begin{pmatrix} -\frac{1}{2}y + 1 \\ -\frac{1}{2}x + \frac{1}{2} \end{pmatrix}$$

Matrix Form of the Operators H_0, \ldots, H_3

In matrix notation, the operators H_0, \ldots, H_3 are:

$$H_0 := \left(\begin{array}{cc} 0 & \frac{1}{2} \\ \frac{1}{2} & 0 \end{array} \right) \left(\begin{matrix} x \\ y \end{matrix} \right) \hspace{1cm} H_1 := \left(\begin{array}{cc} \frac{1}{2} & 0 \\ 0 & \frac{1}{2} \end{array} \right) \left(\begin{matrix} x \\ y \end{matrix} \right) + \left(\begin{matrix} 0 \\ \frac{1}{2} \end{matrix} \right)$$

$$H_2 := \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{2} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} \quad H_3 := \begin{pmatrix} 0 & -\frac{1}{2} \\ -\frac{1}{2} & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} 1 \\ \frac{1}{2} \end{pmatrix}$$

Governing operations:

- scale with factor $\frac{1}{2}$
- translate start of the curve, e.g. $+ \binom{0}{\frac{1}{2}}$
- reflect at x and y axis (for H_3)

A First Comment Concerning Uniqueness

Question:

Are the values h(t) independent of the choice of quarternary representation of t concerning trailing zeros:

$$h(0_4.q_1...q_n) = h(0_4.q_1...q_n000...),$$

Outline of the proof:

- 1. compute the limit $\lim_{n\to\infty} H_0^n$, or $\lim_{n\to\infty} H_0^n \left(\begin{smallmatrix} x \\ y \end{smallmatrix} \right)$; Result: $\lim_{n\to\infty} H_0^n \left(\begin{smallmatrix} x \\ y \end{smallmatrix} \right) = \left(\begin{smallmatrix} 0 \\ 0 \end{smallmatrix} \right)$
- **2.** show: $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ is a fixpoint of H_0 , i. e. $H_0 \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$.
- \Rightarrow independence of trailing zeros, as H_q is applied to the fixpoint!

A Second Comment Concerning Uniqueness

Question:

Are the values h(t) independent of the choice of quarternary representation of t, as in:

$$h(0_4.q_1...q_n) = h(0_4.q_1...q_{n-1}(q_n-1)333...), q_n \neq 0$$

(if $q_n = 0$, then consider $0_4.q_1...q_n = 0_4.q_1...q_{n-1}$)

Outline of the proof:

- 1. compute the limits $\lim_{n\to\infty} H_0^n$ and $\lim_{n\to\infty} H_3^n$.
- **2.** for $q_n = 1, 2, 3$, show that

$$H_{q_n} \circ \lim_{n \to \infty} H_0^n = H_{q_n-1} \circ \lim_{n \to \infty} H_3^n$$

Algorithm to Compute the Hilbert Mapping

Task: given a parameter t, find $h(t) = (x, y) \in \mathcal{Q}$

Most important subtasks:

1. compute quarternary digits – use multiply by 4:

$$4 \cdot 0_4 \cdot q_1 q_2 q_3 q_4 \dots = (q_1 \cdot q_2 q_3 q_4 \dots)_4$$

and cut off the integer part

2. apply operators H_q in the correct sequence – use recursion:

$$h(0_4.q_1q_2q_3q_4...) = H_{q_1} \circ H_{q_2} \circ H_{q_3} \circ H_{q_4} \circ \cdots \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

 stop recursion, when a given tolerance is reached ⇒ track size of interval or set number of digits

Algorithm to Compute the Hilbert Mapping (2)

- h := proc(t)
- (1) determine the subsquare $q \in \{0, ..., 3\}$ by checking $x <> \frac{1}{2}$ and $y <> \frac{1}{2}$:

$$\begin{array}{c|c} 1 & 2 \\ \hline 0 & 3 \end{array}$$

(treat cases $x, y = \frac{1}{2}$ in a unique way: either < or $> \Rightarrow$ technically unique inverse)

- (2) set $(\tilde{x}, \tilde{y}) := H_q^{-1}(x, y)$
- (3) recursively compute $\tilde{t} := \bar{h}^{-1}(\tilde{x}, \tilde{y})$
- (4) return $t:=\frac{1}{4}\left(q+\tilde{t}\right)$ as value

(stopping criterion still to be added)

Computing the Inverse Mapping

Task: find a parameter t, such that h(t) = (x, y) for a given $(x, y) \in \mathcal{Q}$

Problem: *h* not bijective; hence, *t* is not unique

- \Rightarrow a strict inverse mapping h^{-1} does not exist
- \Rightarrow instead, compute a "technically unique" inverse \bar{h}^{-1}

Recursive Idea:

- determine the subsquare that contains (x, y)
- transform (using the inverse operations of H_0, \ldots, H_3) the point (x, y) into the original domain $\to (\tilde{x}, \tilde{y})$
- recursively compute a parameter \tilde{t} that is mapped to (\tilde{x}, \tilde{y})
- depending on the subsquare, compute t from \tilde{t}

Inverse Operators of H_0, \ldots, H_3

$$\left(\begin{array}{c} \tilde{x} \\ \tilde{y} \end{array} \right) = H_0 \left(\begin{array}{c} x \\ y \end{array} \right) = \left(\begin{array}{c} \frac{1}{2}y \\ \frac{1}{2}x \end{array} \right) \quad \Rightarrow \quad \left(\begin{array}{c} x \\ y \end{array} \right) = \left(\begin{array}{c} 2\tilde{y} \\ 2\tilde{x} \end{array} \right)$$

By similar computations:

$$H_0^{-1} := \left(\begin{array}{c} x \\ y \end{array}\right) \rightarrow \left(\begin{array}{c} 2y \\ 2x \end{array}\right) \qquad H_1^{-1} := \left(\begin{array}{c} x \\ y \end{array}\right) \rightarrow \left(\begin{array}{c} 2x \\ 2y - 1 \end{array}\right)$$

$$H_2^{-1} \quad := \quad \left(\begin{array}{c} x \\ y \end{array} \right) \rightarrow \left(\begin{array}{c} 2x-1 \\ 2y-1 \end{array} \right) \quad H_3^{-1} \quad := \quad \left(\begin{array}{c} x \\ y \end{array} \right) \rightarrow \left(\begin{array}{c} -2y+1 \\ -2x+2 \end{array} \right)$$

Algorithm to Compute the Inverse Mapping

$$\bar{h}^{-1} := \operatorname{proc}(x, y)$$

(1) determine the subsquare $q\in\{0,\ldots,3\}$ by checking $x<>\frac{1}{2}$ and $y<>\frac{1}{2}$:

$$\begin{array}{c|c} 1 & 2 \\ \hline 0 & 3 \end{array}$$

(treat cases $x, y = \frac{1}{2}$ in a unique way: either < or > \Rightarrow *technically unique inverse*)

- (2) set $(\tilde{x}, \tilde{y}) := H_q^{-1}(x, y)$
- (3) recursively compute $\tilde{t} := \bar{h}^{-1}(\tilde{x}, \tilde{y})$
- (4) return $t:=\frac{1}{4}\left(q+\tilde{t}\right)$ as value

(stopping criterion still to be added)

