ACOPhys - State University of St. Petersburg

Space-Filling Curves and Their Applications in Scientific Computing

Space-Filling Curves

Michael Bader

Technische Universität München, Sep 1-5, 2008

M. Bader: Space-Filling Curves and Their Applications in Scientific Computing ACOPhys – State University of St. Petersburg, Sep 1–5, 2008

Start: Morton Order / Cantor's Mapping

Questions:

- Can this mapping lead to a contiguous "curve"?
- i.e.: Can we find a continuous mapping?
- and: Can this continuous mapping fill the entire square?

What is a Curve?

Definition (Curve)

As a *curve*, we define the image $f_*(\mathcal{I})$ of a continuous mapping $f: \mathcal{I} \to \mathbb{R}^n$. $x = f(t), t \in \mathcal{I}$ is called *parameter representation* of the curve.

With:

- $\mathcal{I} \subset \mathbb{R}$ and \mathcal{I} is compact, usually $\mathcal{I} = [0, 1]$.
- the *image* $f_*(\mathcal{I})$ of the mapping f_* is defined as $f_*(\mathcal{I}) := \{f(x) \in \mathbb{R}^n \mid x \in \mathcal{I}\}.$
- \mathbb{R}^n may be replaced by any Euklidian vector space (norm & scalar product required).

What is a Space-filling Curve?

Definition (Space-filling Curve)

Given a mapping $f: \mathcal{I} \to \mathbb{R}^n$, then the corresponding curve $f_*(\mathcal{I})$ is called a *space-filling curve*, if the Jordan content (area, volumne, ...) of $f_*(\mathcal{I})$ is larger than 0.

Comments:

assume f: I → Q ⊂ ℝⁿ to be surjective (i.e., every element in Q occurs as a value of f;

then, $f_*(\mathcal{I})$ is a space-filling curve, if the area (volume) of \mathcal{Q} is positive.

if the domain Q has a smooth boundary, then there can be *no* bijective mapping f: I → Q ⊂ ℝⁿ, such that f_{*}(I) is a space-filling curve (theorem: E. Netto, 1879).

History of Space-Filling Curves

- **1877:** Georg Cantor finds a bijective mapping from the unit interval [0, 1] into the unit square $[0, 1]^2$.
- **1879:** Eugen Netto proves that a *bijective* mapping $f: \mathcal{I} \to \mathcal{Q} \subset \mathbb{R}^n$ can not be continuous (i.e., a curve) at the same time (as long as \mathcal{Q} has a smooth boundary).
- **1886:** rigorous definition of *curves* introduced by Camille Jordan
- **1890:** Giuseppe Peano constructs the first space-filling curves.
- **1890:** Hilbert gives a geometric construction of Peano's curve; and introduces a new example the Hilbert curve
- 1904: Lebesgue curve
- 1912: Sierpinski curve

Construction of the Hilbert curve

Iterations of the Hilbert curve:

- start with an iterative numbering of 4 subsquares
- combine four numbering patterns to obtain a twice-as-large pattern
- · proceed with further iterations

Construction of the Hilbert curve

Recursive construction of the *iterations*:

- split the quadratic domain into 4 congruent subsquares
- find a space-filling curve for each subdomain
- join the four subcurves in a suitable way

A Grammar for Describing the Hilbert Curve

Construction of the iterations of the Hilbert curve:

 \rightarrow motivates a Grammar to generate the iterations

A Grammar for Describing the Hilbert Curve

- Non-terminal symbols: {*H*, *A*, *B*, *C*}, start symbol *H*
- terminal characters: $\{\uparrow, \downarrow, \leftarrow, \rightarrow\}$
- productions:

$$H \longleftarrow A \uparrow H \to H \downarrow B$$
$$A \longleftarrow H \to A \uparrow A \leftarrow C$$
$$B \longleftarrow C \leftarrow B \downarrow B \to H$$
$$C \longleftarrow B \downarrow C \leftarrow C \uparrow A$$

• replacement rule: in any word, all non-terminals have to be replaced at the same time \rightarrow L-System (Lindenmayer)

 \Rightarrow the arrows describe the iterations of the Hilbert curve in "turtle graphics"

пп

Definition of the Hilbert Curve's Mapping

Definition: (Hilbert curve)

 each parameter t ∈ I := [0, 1] is contained in a sequence of intervals

$$\mathcal{I} \supset [a_1, b_1] \supset \ldots \supset [a_n, b_n] \supset \ldots,$$

where each interval result from a division-by-four of the previous interval.

- each such sequence of intervals can be uniquely mapped to a corresponding sequence of 2D intervals (subsquares)
- the 2D sequence of intervals converges to a unique point q in $q \in Q := [0, 1] \times [0, 1] q$ is defined as h(t).

Theorem

 $h: \mathcal{I} \rightarrow \mathcal{Q}$ defines a space-filling curve, the Hilbert curve.

пп

Proof: *h* **defines a Space-filling Curve**

We need to prove:

- *h* is a mapping, i.e. each *t* ∈ *I* has a *unique* function value *h*(*t*) → OK, if *h*(*t*) is independent of the choice of the sequence of intervals
- $h: \mathcal{I} \rightarrow \mathcal{Q}$ is surjective:
 - for each point *q* ∈ Q, we can construct an appropriate sequence of 2D-intervals
 - the 2D sequence corresponds in a unique way to a sequence of intervals in \mathcal{I} this sequence defines an original value of q
 - \Rightarrow every $q \in \mathcal{Q}$ occurs as an image point.
- h is continuous

Continuity of the Hilbert Curve

```
A function f: \mathcal{I} \to \mathbb{R}^n is continuous, if
for each \epsilon > 0
a \delta > 0 exists, such that
for all t_1, t_2 \in \mathcal{I} with |t_1 - t_2| < \delta, the following inequality holds:
\|f(t_1) - f(t_2)\|_2 < \epsilon
```

Strategy for the proof:

For any given parameters t_1, t_2 , we compute an estimate for the disctance $||h(t_1) - h(t_2)||_2$ (functional dependence on $|t_1 - t_2|$). \Rightarrow for any given ϵ , we can then compute a suitable δ

M. Bader: Space-Filling Curves and Their Applications in Scientific Computing ACOPhys – State University of St. Petersburg, Sep 1–5, 2008

Continuity of the Hilbert Curve (2)

- given: $t_1, t_2 \in \mathcal{I}$; choose an *n*, such that $|t_1 t_2| < 4^{-n}$
- in the *n*-th iteration of the interval sequence, all interval are of length 4^{-n}
 - \Rightarrow [t_1, t_2] overlaps at most two neighbouring(!) intervals.
- due to construction of the Hilbert curve, the values *h*(*t*₁) and *h*(*t*₂) will be in neighbouring subsquares with face length 2⁻ⁿ.
- the two neighbouring subsquares build a rectangle with a diagonal of length $2^{-n} \cdot \sqrt{5}$; therefore: $\|h(t_1) h(t_2)\|_2 \leq 2^{-n}\sqrt{5}$

For a given $\epsilon > 0$, we choose an *n*, such that $2^{-n}\sqrt{5} < \epsilon$. Using that *n*, we choose $\delta := 4^{-n}$; then, for all t_1, t_2 with $|t_1 - t_2| < \delta$, we get: $||h(t_1) - h(t_2)||_2 \le 2^{-n}\sqrt{5} < \epsilon$. Which proves the continuity!

Construction of the Hilbert-Moore Curve

New Construction:

- · modified orientation of the subcurves in the first iteration
- leads to a closed curve: start and end point at $\left(0, \frac{1}{2}\right)$

